GENERAL INFORMATION

SECTION

CONTENTS

PRECAUTIONS GI- 2
HOW TO USE THIS MANUAL GI- 6
HOW TO READ WIRING DIAGRAMS Gl- 8
HOW TO FOLLOW FLOW CHART IN TROUBLE DIAGNOSES Gl-12
CONSULT CHECKING SYSTEM Gl-16
IDENTIFICATION INFORMATION Gl-18
LIFTING POINTS AND TOW TRUCK TOWING $\mathrm{Gl}-22$
TIGHTENING TORQUE OF STANDARD BOLTS Gl-25

Abstract

Observe the following precautions to ensure safe and proper servicing. These precautions are not described in each individual section.

1. Do not operate the engine for an extended period of time without proper exhaust ventilation.
Keep the work area well ventilated and free of any inftammable materials. Special care should be taken when handiling any inflammable or poisonous materials, such as gasoline, reirigerant gas, etc. When working in a pit or other enclosed area, be sure to properly ventilate the area before working with hazardous materials.
Do not smoke while working on the vehicle.
2. Before jacking up the vehicle, apply wheel chocks or other tire blocks to the wheels to prevent the vehicle from moving. After jacking up the vehicle, support the vehicle weight with satety stands at the points designated for proper lifting and towing before working on the vehicle. These operations should be done on a level surface.
3. When removing a heavy component such as the engine or transaxle/transmission, be careful not to lose your balance and drop them. Also, do not allow them to strike adjacent parts, especially the brake tubes and master cylinder.
4. Before starting repairs which do not require battery power, always turn off the ignition switch, then disconnect the ground cable from the battery to prevent accidental short circuit.
5. To prevent serious burns, avoid contact with hot metal parts such as the radiator, exhaust manifold, tail pipe and muffler. Do not remove the radiator cap when the engine is hot.

6. Before servicing the vehicle, protect fenders, upholstery and carpeting with appropriate covers.
Take caution that keys, buckles or buttons on your person do not scratch the paint.
7. Clean all disassembled parts in the designated liquid or solvent prior to inspection or assembly.
8. Replace oil seals, gaskets, packings, O-rings, locking washers, cotter pins, self-locking nuts, etc. with new ones.
9. Replace inner and outer races of tapered roller bearings and needle bearings as a set.
10. Arrange the disassembled parts in accordance with their assembled iocations and sequence.
11. Do not touch the terminals of electrical components which use microcomputers (such as efectronic control units). Static electricity may damage internai electronic components.
12. Atter disconnecting vacuum or air hoses, attach a tag to indicate the proper connection.
13. Use only the lubricants specified in MA section.
14. Use approved bonding agent, sealants or their equivalents when required.
15. Use tools and recommended special tools where specified for safe and efficient service repairs.
16. When repairing the fuel, oil, water, vacuum or exhaust systems, check all affected lines for leaks.
17. Dispose of drained oil or the solvent used for cleaning parts in an appropriate manner.

Precautions for E.F.I. or E.C.C.S. Engine

1. Before connecting or disconnecting E.F.I. or E.C.C.S. harness connector to or from any E.F.I. or E.C.C.S. control unit, be sure to turn the ignition switch to the "OFF" position and disconnect the negative battery terminal.
Otherwise, there may be damage to control unit.
2. Before disconnecting pressurized fuel line from fuel pump to injectors, be sure to release fuel pressure to eliminate danger.
3. Be careful not to jar components such as control unit and air flow meter.

Precautions for Catalyst

If a large amount of unburned fuel flows into the converter, the converter temperature will be excessively high. To prevent this, follow the procedure below:

1. Use unleaded gasoline only. Leaded gasoline will seriously damage the catalytic converter.
2. When checking for ignition spark or measuring engine compression, make tests quickly and only when necessary.
3. Do not run engine when the fuel tank level is low, otherwise the engine may misfire causing damage to the converter.
4. Do not place the vehicle on inflammable material. Keep inflammable material off the exhaust pipe.

Precautions for Turbocharger

The turbocharger turbine revolves at extremely high speeds and becomes very hot. Therefore, it is essential to maintain a clean supply of oil flowing through the turbocharger and to follow all required maintenance instructions and operating procedures.
For proper operation of the system, follow the procedure below.

1. Always use the recommended oll. Follow the instructions for proper time to change the oil and proper oil level.
2. Avoid accelerating engine to a high rpm immediately atter starting.
3. If engine had been operating at high rpm for an extended period of time, let it ide for a few minutes prior to shutting it oft.

Asbestos Safety Instructions (Based on United Kingdom and Republic of Ireland regulations)

This vehicle uses parts containing asbestos. Most are not hazardous but Brake and Clutch Inings can be. Consult the manufacturer or his agent for further detaliss. When working with these please observe the "Garage Workers' Asbestos Code" available through your Nissan Dealer, Local Authority or Health and Satety Executive. In particular, work in a well-ventilated place using, where possible, appropriate dust extraction equipment, and avoid creating dust. Dampen all asbestos/dust where possible prior to machining, cutting, cleaning, etc. Use only hand or low speed tools.
Dispose of all asbestos waste, wet rags, etc., in a closed container as directed by your local waste disposal authority.

PRECAUTIONS

Precautions for Fuel

For Australla

Unleaded gasoline of at least 91 octane (RON)
For optimum engine performance, Nissan recommends the use of premium unleaded petrol above 95 octane (RON). However if this petrol is not available, your Nissan vehicle will also operate with 91 to 93 octane (RON) fuel.
CAUTION:
Do not use leaded gasoline. Using leaded gasoline will damage the catalytic converter.

For Europe

Unleaded premium gasoline with an octane rating of at least 95 (RON) must be used.
If premium gasoline is not available, unleaded regular gasoline with an octane rating of 91 (RON) may be temporarily used, but only under the following precautions:

- Have the fuel tank filled only partially with unleaded regular gasoline, and fill up with premium unleaded gasoline as soon as possible.
- Avoid full throttle driving and abrupt acceleration.

CAUTION:
Do not use leaded gasoline. Using leaded gasoline will damage the catalytic converter.

1. A QUICK REFERENCE INDEX, a black tab (e.g. BR) is provided on the first page. You can quickly find the first page of each section by mating it to the section's black tab.
2. THE CONTENTS are listed on the first page of each section.
3. THE TITLE is indicated on the upper portion of each page and shows the part or system.
4. THE PAGE NUMBER of each section consists of two letters, which designate the particular section, and a number (e.g. "BR-5").
5. THE LARGE ILLUSTRATIONS are exploded views (See below.) and contain tightening torques, lubrication points and other information necessary to perform repairs.
The illustrations should be used in feference to service matters only. When ordering parts, refer to the appropriate PARTS CATALOG.

6. THE SMALL LLLUSTRATIONS show the important steps such as inspection, use of special tools, knacks of work and hidden or tricky steps which are not shown in the previous large illustrations. Assembly, inspection and adjustment procedures for the complicated units such as the automatic transaxle or transmission, etc, are presented in a step-by-step format where necessary.
7. The following SYMBOLS AND ABBREVIATIONS are used:

-1	: Tightening torque	AfT	: Automatic Transaxle/Transmission
+10	: Should be lubricated with grease. Un-	A/C	: Air Conditioner
	less otherwise indicated, use recom-	S.S.T.	: Power Steering Service Tools
	mended multi-purpose grease.	S.D.S.	: Service Data and Specifications
	Should be lubricated with oll.	SAE	: Society of Automotive Engineers, Inc.
2	: Sealing point	G.C.C.	: Gulf Cooperation Council
(3)	: Checking point	L.H.D.	: Left-Hand Drive
8	: Always replace after every disassem-	R.H.D.	: Right-Hand Drive
	bly.	D_{1}	: Drive range 1st gear
L.H., A.H.	: Left-Hand, Right-Hand	D_{2}	: Drive range 2nd gear
FR, RA	: Front, Rear	D_{3}	: Drive range 3rd gear
2WD	: 2-Wheel Drive	D_{4}	: Drive range 4th gear
-me	: Apply petroleum jelly.	O.D.	: Overdrive
(ATP)	: Apply A.T.F.	2	: 2nd range 2nd gear
*	: Select with proper thickness.	21	: 2nd range 1st gear
法	: Adjustment is required.	12	: Ist range 2nd gear
M/T	- Manual Transaxle/Transmission	$1{ }_{1}$: 1st range 1st gear

8. The UNITS given in this manual are primarily expressed as the SI UNIT (International System of Unit), and alternatively expressed in the metric system and in the yard/pound system.

"Example"
 Tightening torque:
 $59-78 \mathrm{~N} \cdot \mathrm{~m}(6.0-8.0 \mathrm{~kg}-\mathrm{m}, 43-58 \mathrm{ft} \mathrm{lb})$

9. TROUBLE DIAGNOSES are included in sections dealing with complicated components.
10. SERVICE DATA AND SPECIFICATIONS are contained at the end of each section for quick reference of data.
11. The captions WARNING and CAUTION warn you of steps that must be followed to prevent personal injury and/or damage to some part of the vehicle.

- WARNING indicates the possibility of personal injury if instructions are not followed.
- CAUTION indicates the possibility of component damage if instructions are not followed.
- BOLD TYPED STATEMENTS except WARNING and CAUTION give you helpful information.

WIRING DIAGRAM

Symbols used in WIRING DIAGRAM are shown below:

SWITCH POSITIONS

Wiring diagram switches are shown with the vehicle in the following condition.

- Ignition switch "OFF".
- Doors, hood and trunk lid/back door closed.
- Pedals are not depressed and parking brake is released.

CONNECTOR SYMBOLS

- All connector symbols in wiring diagrams are shown from the terminal side.
- Male and female terminals

Connector guides for mate terminals are shown in black and female terminals in white in wiring diagrams.

MULTIPLE SWITCH

The continuity of the multiple switch is identifled in the switch chart in wiring diagrams.

| Exampla |
| :--- | :--- |
| |

SUPER MULTIPLE JUNCTION (S.M.J.)

- The "S.M.J." indicated in wiring diagrams is shown in a simplified form. The terminal arrangement should therefore be referred to in the foldout at the end of the Service Manual.
- The foldout should be spread to read the entire wiring diagram.

Example

NOTICE

The flow chart indicates work procedures required to diagnose problems effectively. Observe the following instructions before diagnosing.

1) Use the flow chart after locating probable causes of a problem following the "Preliminary Check" or the "Symptom Chart".
2) After repairs, re-check that the problem has been completely eliminated.
3) Refer to Component Parts Location and Harness Layout for the Systems described in each section for Identification/location of components and harness connectors.
4) Refer to the Circuit Dlagram for Oulck Pinpoint Check. If you must perform circuit continuity between harness connectors more detall, such as in case of sub-harness is used, refer to Wiring Diagram and Harness Layout in EL section for identification ol harness connectors.
5) When checking circuif continulty, ignition switch shouid be "OFF".
6) Before checking voltage at connectors, check battery voltage.
7) After accomplishing the Diagnostic Procedures and Electrical Components inspection, make sure that all harness connectors are reconnected as it was.

HOW TO FOLLOW THIS FLOW CHART

(1) Work and diagnostic procedure

Start to diagnose a problem using procedures indicated in enclosed blocks, as shown in the following example.

CHECK POWER SUPPLY. 4 Check item being performed.

1) Turn ignition switch "ON".
2) Check voltage between terminal (b) and ground.
Battery voltage should extst.
Procedure, steps or measurement results
O.K.

(2) Measurement results

Required results are indicated in bold type in the corresponding block, as shown below:
These have the following meanings:
Battery voltage $\rightarrow \mathbf{1 1}$ - 14 V or approximately 12 V
Voltage: Approximately $0 \mathrm{~V} \rightarrow$ Less than IV
(3) Cross reference of work symbols in the text and illustrations
Hlustrations are provided as visual aids for work procedures. For example, symbol A indicated in the left upper portion of each illustration corresponds with the symbol in the flowchart for easy identification. More precisely, the procedure under the "CHECK POWER SUPPLY" outlined previously is indicated by an illustration A.

4) Symbols used in illustrations

Symbols included in illustrations refer to measurements or procedures. Before diagnosing a problem, familiarize yourself with each symbol.

Direction mark

A direction mark is shown to clarify the side of connector (terminal side or harness side).
Direction marks are mainly used in the illustrations indicating terminal inspection.

: Vlew from terminal side ... T.S.

- All connector symbols shown from the terminal side are enciosed by a singie line.

: View from harness side ... H.S.
- All connector symbols shown from the harness side are enclosed by a double line.

Key to symbols signifying measurements or procedures

Outside View

Function

Diagnostic mode	Function
Work support	This mode enabies a technician to adjust some devlces faster and more accurately by following the indications on ConSULT.
Self-diagnostic results	Selt-diagnostic results can be read and erased quickly.
Data monitor	Input/Output data in the control unit can be read.
Active test	Mode in which CONSULT drives some ac- tuators apart from the controt units and falso shlfts some parameters in a specitied range.
E.C.U. part number	E.C.U. pari number can be read.

Checking Equipment

Tool name
NISSAN CONSULT kit
(1) CONSULT unit
and accessories
(3) Program card
(3) Operation manurion
(6) Thermal paper (Rots)

[^0]Model Variation

Body	Destination	Model		Engine	Transmission	Differential cafrier
T-bar roof	Europe	$2+2$	KRG-JSQ	VG300ET	RS5R30A	R230V
			KRG-JASQ		REGA03A	
			KRLG-JSQ		RS5R30A	
			KRL G-JASQ		REAR03A	
T-bar roof	Australia	$2+2$	KRG-JM	VG30DE	RS5R30A	R200V
			KFG-JAM		RE6R01A	

Prefix and suffix designations:

[]: means no indication

Identification Number

VEHICLE IDENTIFICATION NUMBER ARRANGEMENT

Body type
G:2+2 seater

Identification Number (Cont'd)

IDENTIFICATION PLATE

ENGINE SERIAL NUMBER

MANUAL TRANSMISSION NUMBER

AUTOMATIC TRANSMISSION NUMBER

Dimensions

	$2+2$
Overall length	$4,525(178.1)$
Overall width	$1,800(70.9)$
Overall height (T-bar roof)	$1,255(49.4)$
Front tread	$1,495(58.9)$
Rear tread	$1,535(60.4)^{*} \dagger$
Wheelbase	$1,555(61.2)^{\prime 2}$

*F: For Australia
*2: For Europe

Wheels and Tires

Road wheel			
	Alsminum	Steel	Oftset mmm (in)
Conventional	$16 \times 7.5 \mathrm{JJ}{ }^{*} 1$	-	45 (1.77)
	$16 \times 8.5 \mathrm{~J} \mathrm{~F}^{*} 2$	-	$35(1.38) * *$
Spare T-fype	-	$16 \times 4 \mathrm{~T}$	30 (1.18)
Tire size			
Conventional		P225/50R16 91V*3	
		225/50ZR $166^{4} 4$	
		245/45ZR16*5	
Spare F-type		T $125 / 90016$	

*1: For Australia and front wheel for Europe
*2: Rear wheel for Eurepe
*3: For Austratia
4: Front tire for Europe
*5: Rear tire for Europe

Garage Jack and Safety Stand

WARNING:

- Never get under the vehicle while it is supported only by the jack. Always use safety stands to support the frame when you have to get under the vehicie.
- Place wheel chocks af both the front and rear of the wheels on the ground.
CAUTION:
Place a wooden or rubber block between safety stand and vehfcle body when the supporting body is fiat.

2-pole Lift
 WARNING:

When liting the vehicle, open the lift arms as wide as possible and ensure that the front and rear of the vehicle are well balanced.
When setting the lift arm, do not allow the arm to contact the brake tubes and fuel ines.

Tow Truck Towing

CAUTION:

- All applicable local laws regarding the towing operation must be obeyed.
- It is necessary to use proper towing equipment to avoid possible damage to the vehicle during towing operation. Towing is in accordance with Towing Procedure Manual at dealer.
- When towing with the rear wheels on the ground, release the parking brake and move the gearshith lever to neutral ("N" position).

NISSAN recommends that vehicle be towed with the driving (rear) wheels off the ground as illustrated.

Observe the following restricted towing speeds and distances. Speed:

Below $50 \mathrm{~km} / \mathrm{h}$ ($\mathbf{3 0} \mathrm{MPH}$)
Distance:
Less than 65 km (40 miles)
If the speed or distance must necessarily be greater, remove the propeller shaft beforehand to prevent damage to the transmission.

TOWING POINT

- Always pull the cable straight out from the vehicle. Never pull on the hook at a sideways angle.
- Remove the first bolt under the front fender protector when using the front towing hooks.

Grade	Bolt size	Bolt diameter* mm	Pitch mm	Tightening torque (Without labricant)					
				Hexagon head boit			Hexagon flange boit		
				N-m	kg-m	$\mathrm{ft}-\mathrm{b}$	$\mathrm{N} \cdot \mathrm{m}$	$\mathrm{kg}-\mathrm{m}$	ft-lb
4T	M6	6.0	1.0	5.1	0.52	3.8	6.1	0.62	4.5
	M8	8.0	1.25	13	1.3	9	15	1.5	11
			1.0	13	1.3	9	16	1.6	12
	M 10	10.0	1.5	25	2.5	18	29	3.0	22
			1.25	25	2.6	19	30	3.1	22
	M12	12.0	1.75	42	4.3	31	51	5.2	38
			1.25	46	4.7	34	56	5.7	41
	M14	14.0	1.5	74	7.5	54	88	9.0	65
7 T	M6	6.0	1.0	8.4	0.86	6.2	10	1.0	7
	M8	8.0	1.25	21	2.1	15	25	2.5	18
			1.0	22	2.2	16	26	2.7	20
	M10	10.0	1.5	41	4.2	30	48	4.9	35
			1.25	43	4.4	32	54	5.2	38
	M12	12.0	1.75	71	7.2	52	84	8.6	62
			1.25	77	7.9	57	92	9.4	68
	M14	14.0	1.5	127	13.0	94	147	15.0	108
97	M6	6.0	1.0	12	1.2	9	15	1.5	11
	M8	8.0	1.25	29	3.0	22	35	3.6	26
			1.0	31	3.2	23	37	3.8	27
	M10	10.0	1.5	59	6.0	43	70	7.1	51
			1.25	62	6.3	46	74	7.5	54.
	M12	12.0	1.75	98	10.0	72	118	12.0	87
			1.25	108	11.0	80	137	14.0	101
	M14	14.0	1.5	177	18.0	130	206	21.0	152

1. Special parts are excluded.
2. This standard is appleable to bolta having the following marks embessed on the bolt head.

* : Nominal diameter
Grade
Mark
$4 T$
T
$7 T$ 4 7
9 T 9

CONTENTS

PRE-DELIVERY INSPECTION ITEMS MA- 2
GENERAL MAINTENANCE MA- 3
PERIODIC MAINTENANCE (Except for Europe) MA- 4
PERIODIC MAINTENANCE (For Europe except U.K.) MA- 6
PERIODIC MAINTENANCE (For U.K.) MA- 8
RECOMMENDED FLUIDS AND LURRICANTS MA- 10
ENGINE MAINTENANCE MA-12
CHASSIS AND BODY MAINTENANCE MA-21
SERVICE DATA AND SPECIFICATIONS (S.D.S.) MA-31

Shown below are Pre-delivery Inspection ltems required for the new vehicie. It is recommended that necessary ltems other than those listed here be added, paying due regard to the conditions in each country.
Perform applicable items on each model. Consult text of this section for specifications.

UNDER HOOD - engine off

\square Radiator coolant level and coolant hose connections for leaks
\square Battery fluid level, specitic gravity and conditions of battery terminals
\square Drive belts tensionFuel filter for water or dusts, and fuel lines and connections for leaks
4 Engine oil level and oil leaks
\square Clutch and brake reservoir fluid level and fluid lines for leaks
T. Windshield and rear window washer and headlamp cleaner reservoir fluid level
\square Power steering reservoir fluid level and hose connections for leaks

ON INSIDE AND OUTSIDE

\square Remove front spring/strut spacer (If applicable)
\square Operation of all instruments, gauges, lights and accessories
O Operation of horn(s), wiper and washer
\square Steering lock for operation Check air conditioner for gas leaks
Front and rear seats, and seat belts for operation

- All moldings, trims and fittings for fit and alignment
\square All windows for operation and alignment
[]] Hood, trunk lid, door panels for fit and alignment
「]. Latches, keys and locks for operation Weatherstrips for adhesion and fit Headlamp aiming
\square Tighten whee! nuts (inc. inner nuts if applicable)
L Tire pressure (Inc. spare tire)
\square Check front wheels for toe-in
\square install clock/voltmeter/room lamp fuse (If applicable)
In Install deodorizing filter to air purifier (If applicable)
x Remove wiper blade protectors (if applicable)

UNDER BODY

… Manual transmission/transaxle, transfer and differential gear oll level
\square Brake and tuel lines and oil/fluid reservoirs for leaks
\square Tighten bolts and nuts of steering linkage and gear box, suspension, propeller shafts and drive shafts
X Tighten rear body bolts and nuts (Models with wooden bed oniy)

ROAD TEST

Clutch operation

Parking brake operation
Service brake operation
\square Automatic transmission/transaxle shift timing and kickdown
\square Steering control and returnability
Engine performance
\square Squeaks and rattles

ENGINE OPERATING AND HOT

\square Adjust idie mixture and speed (and ignition timing*1)
\because Automatic transmission/transaxle fluid level
X. Engine idling and stop knob operation (Diesel only)

FINAL INSPECTION

\sqcup Install necessary parts (outside mirror, wheel covers, seat beits, mat, carpet or mud tlaps)
\square Inspect for interior and exterior metal and paint damage
[. Check for spare tire, jack, tools (wheel chock), and literature
\square Wash, clean interior and exterior
-1: Not required on models with a direct ignition system
(xi Not applicable to this model.

General maintenance includes those items which should be checked during the normal day-to-day operation of the vehicle. They are essential if the vehicle is to continue operating properiy. The owners can perform the checks and inspections themselves or they can have their NISSAN dealers do them for a nominal charge.

Item	Reference pages
OUTSIDE THE VEHICLE The maintenance items listed here should be performed from time to time, unless otherwise specified.	
Tires Check the pressure with a gauge periodically when at a service station, neluding the spare, and adjust to the specified pressure if necessary. Check carettally for damage, cuts or excessive weaf.	-
Windisheld wiper blades Check for cracks or wear it they do not wipe properly.	-
Doors and engine hood Check that all doors, the engine hood, the trunk lid and back door operate properly. Also ensure that all latches lock securely. Lubricate if necessary. Make sure that the secondary latch keeps the hood from opening when the primary latch is released. When driving in areas using road salt or other corrosive materials, check for mbrication trequently.	MA-29
Tire rotation Tires should be rotated every $10,000 \mathrm{~km}$ (6,000 miles) for non-turbo models.	MA-26

INSIDE THE VEHICLE

The maintenance items listed here should be checked on a regular basis, such as when performing periodic maintenance, cleaning the vehicle. etc.
Lights Make sure that the headights, stop lights, tail lights, turn signal lights, and other末ights are all operating properly and installed securely. Also check headight aim.
Warning lights and chlmes Make sure that all warning lights and chimes are operating
properly.

Steering wheel Check for change in the steering conditions, such as excessive free play, hard steering or strange noises.

Free play: Less than 35 mm ($\mathbf{1 . 3 8 \mathrm { in } \text {) }) ~ (1)}$
UNDER THE HOOD AND VEHICLE
The maintenance items isted here should be checked periodically eg. each time you check the engine oil of refuel.
Windshield washer Hutd Check that there is adequate fluid in the tank.
Engine coolant levet Check the coolant level when the engine is cold.
Engine ofl level Check the level after parking the vehicle on a level spot and turning of the
engine.

Brake and clutch fluid level Make sure that the brake and clutch fluid level is between the 'MAX" and "MiN" lines on the reservoir.

$$
\text { MA-21, } 24
$$

Battery Cheak the flaid level in each cell. It should be between the "MAX' and 'MIN' lines. -

The following tables show the normal maintenance schedule. Depending upon weather and atmospheric conditions, varying road surfaces, individual driving habits and vehicle usage, additional or more frequent maintenance may be required.
Periodic maintenance beyond the last period shown on the tables requires similar maintenance.

MAINTENAMCE OPERATION	MAINTENANCE INTERVAL										
Perform either at number of kilometers (milies)	$\begin{aligned} & \mathrm{k} \boldsymbol{m} \times \mathrm{f}, 000 \\ & (\text { Mifes } \times \mathrm{f}, 000) \end{aligned}$	$\begin{gathered} 1 \\ (0,6) \end{gathered}$	10 $\text { (} 6$	$\begin{gathered} 20 \\ \vdots \\ 12 \end{gathered}$	$\begin{gathered} 30 \\ \{18\} \end{gathered}$	$\begin{aligned} & 40 \\ & (24) \end{aligned}$	$\begin{gathered} 50 \\ (30) \end{gathered}$	$\begin{gathered} 60 \\ (36) \end{gathered}$	$\begin{gathered} 70 \\ (42) \end{gathered}$	$\begin{gathered} 80 \\ (48) \end{gathered}$	Prference page
	Monthes	..-.	B	纪	ta	24	30	36	42	48	

ENGINE AND EMISSION CONTROL Underhood and under vehicle

[^1]
Maintenance under Severe Driving Conditions

The maintenance intervals shown on the preceding page are for normal operating conditions. If the vehicle is mainly operated under severe driving conditions as shown below, more frequent maintenance must be performed on the following items as shown in the table.

SEVERE DRIVING CONDITIONS

A - Driving under dusty conditions
B - Driving repeatedly short distances
C - Towing a traller
D - Extensive idling
E - Driving in extremely adverse weather conditions or in areas where ambient temperatures are either extremely low or extremely high
F -- Driving in high humidity areas or in mountainous areas
G - Driving in areas using salt or other corrosive materials
H — Driving on rough and/or muddy roads or in the desert
1 -... Driving with frequent use of braking or in mountainous areas

	Driving condition	Maintenamce iterf	Maintenance operation	Maintenance Interval	Reference page
A	- . . .	Air cleaner filter	Replace	More frequently	MA-16
	E CD.	Engine oif 8 all filter	Replace	Every $5,000 \mathrm{~km}$ $\{3,000$ miles $\}$ of 3 months	MA 16,17
A	. . E	Fuel tilter	Replace	Every $20,000 \mathrm{~km}$ (12,000 miles) of 12 menths	MA-涫
\cdots	, , . . F . .	Erake flutic	Replace		MA-25
.	. C. . . H.	Automatic \& manalal transmission oil, \& differential gear of	Replace	Every $40,500 \mathrm{~km}$ (24,000 miles) of 24 months	MA-22, 23, 24
-	G H	Steering gear \& limkage: axie \& suspension parts \& propellar stath	Check	Every $10,010 \mathrm{~km}$ (6,000 miles) of 6 months	$\begin{aligned} & \text { MA- } 23,27 \\ & \text { FA- } 6, \text { RA-5 } \end{aligned}$
 ${ }^{\text {. }}$	Locks, hinges \& hood littch	Lubricate		MA-29
A	C. \quad ¢	Brake pads, discs \& other brake components	Check	Every $5,000 \mathrm{~km}$ (3,000 miles) or 3 months	MA-25

Maintenance operation: Check $=$ Check. Correct or replace if necessary.

The following tables show the normal maintenance schedule. Depending upon weather and atmospheric conditions, varying road surfaces, individual driving habits and vehicle usage, additional or more frequent maintenance will be required.

Periodic maintenance beyond the last period shown on the tables requires similar maintenance.

STANDARD \& THE FIRST FREE SERVICES

MAINTENANCE OPERATIDN	MAINTENAMCE INTERVAL				Referance page
Pertorme the standard service on a yearly basis, but on a mileage basis when ffiving more than 2a, (000 km [12, (0) miles) a year.	12		36	48	
	20	40	60	89\%	
	(17)	(24)	(36)	(48)	
Engine Underhood and under vehicle					
Check drive betts for tratks, fraying. Wear \& tension		x		x	MA-12
Change engine anti-freeze coolant (Etrylene glycol base')		<		\times	MA-13
Check toring systerm	x	χ	X	X	MA-14
therck Puel ines		x		X	MA-15
Replace air cieanef tiler (Viscous paper type)*		X		X	MA-tis
Replace timiny oels					EM-13
Replace tue fitiet*	x			x	
Replace spafk plaps (Use PLATINUN-F1PPED type.)	Every $100,000 \mathrm{~km}$ ($60,000 \mathrm{mmi}$ ms)				A $\mathrm{A}^{\text {- }} 18$
Chack exthatst ass strn50r (Except modets lor Sweder)	x			x	MA.20
Chack vaphr lines See NOTI (17	X			X	MA-19
Chassis and body Enderhood					
Chack brake \& thuth fluid tevel \& leaks	x	x	X	x	MA-21. 24
		x		X	MA-22
Crange brake tluid*		x		X	AMA-25
Check braxe booblet vacunm hoses, connections \& check valve		x		x	*AA-25
Check power steering tuic \& lines	x	x	x	x	MA. 66
Check A S.C D. vacuurr hoses	X	x	X	X	MA-21
Under vehicle					
Chack brake \& clutch for proper attachment, laaks, cracks, chafing. atrasion, deterioration, etc.. \qquad	x	x	x	x	MA-21. 24
Check oil Fevel im manual transmission \& differental gear*		X		x	MA-ET. 24
Check stearitug geat \& linkage, axle \& suspensinn parts. propeller shaft, drive shatts $\&$ extazust system for damage. loose 8 missing parts, fibrication 8 leaks ${ }^{6}$		x		X	$\begin{aligned} & \text { MA-23, 家. } \\ & 27,28 \\ & \text { FA, } 6, \text { RA, } 5,7 \end{aligned}$
Chec< SUPER HICAS linkaget		K		X	MA.27
Outside and Inside					
Check whee aigitment. If necossary balance wheets	x	X	x	X	$\begin{aligned} & \text { MA. } 26 \\ & \text { FA. } 7 \end{aligned}$
Check brake pads. discs 8 other brake cemponents for wear, delerboration 8 leaks	x	X	x	X	MA-25
Check seat betrs, buckles, retractors, anetors 8 adjuster	x			X	MA-29
Cleek foot brake, parkirg brake \& clutch for dree play, stroke \& operatione \qquad	x	x	x	X	$\begin{aligned} & \mathrm{CL}-7, \mathrm{Bf}-\mathrm{P} \text {. } \\ & \text { 2m } \end{aligned}$
Check body corrosion	Annualmy				MA.30

[^2]Check: Check. Correct or replace if necessary.

ENGINE OIL SERVICE

MAINTENANCE OPERATION:	MAINTENANCE INTERVAL									
Peithorit at the specifled time generaliy.	Months	12	24	36	48	69	72	84	96	
whent driving more than $10,000 \mathrm{~km}$	$\mathrm{km} \times 1,000$	10	20	30	46	90	60	70	80	
(6,000 miles) a year.	(Mites \times \%,000]	(6)	(12)	(18)	(24)	(30)	(36)	(42)	(48)	
Underhood										
Change engine oil (Use APa SG dik onlylt		x	X	X	x	X	x	X	x	MA-1\%
Change engine oil filter flise Nissan Patert	type or equival	X	x	X	X	x	x	x	X	MA-17

NOTE: Maintenance items with " \star " Bhould be pertormed more frequently according to "Maintenance under severe driving conditions".

MAINTENANCE UNDER SEVERE DRIVING CONDITIONS

The maintenance intervals shown on the preceding pages are for normal operating conditions. If the vehicle is mainly operated under severe driving conditions as shown below, more frequent maintenance must be performed on the foltowing items as shown in the table.

Severe driving conditions

A - Driving under dusty conditions
B - Driving repeatedly short distances
C - Towing a trailer
D -- Extensive idling
E - Driving in extremely adverse weather conditions or in areas where ambient temperatures are either extremely low or extremely high
F - Driving in high humidity areas or in mountainous areas
G - Driving in areas using salt or other corrosive materials
H - Driving on rough and/or muddy roads or in the desert
1 - Driving with frequent use of braking or in mountainous areas

[^3]The following tables show the normal maintenance schedule. Depending upon weather and atmospheric conditions, varying road surface, individual driving habits and vehicle usage, additional or more frequent maintenance will be required.

Periodic maintenance beyond the last period shown on the tables requires stmilar maintenance.

NOTE: Maintenance ftems with " " should be periormed more frequently according to "Malnlenance under severe driving conditions".
Check: Check. Correct or replace if necessary.

MAINTENANCE UNDER SEVERE DRIVING CONDITIONS

The maintenance intervals shown on the preceding page are for normal operating conditions. If the vehicle is mainly operated under severe driving conditions as shown below, more frequent maintenance must be performed on the following items as shown in the table.

Severe driving conditions

A - Driving under dusty conditions
B - Driving repeatedly short distances
C - Towing a trailer
D - Extensive idling
E - Driving in areas using salt or other corrosive materials
F - Driving on rough and/or muddy roads or in the desert
G - Driving with frequent use of braking or in mountainous areas

[^4]Fluids and Lubricants

		Capacity (Approximate)		Recommended fuids and lubricants
		Liter	Imp measure	
Engine of (Retill)				
With oil filter		3.4	3 at	For models for Europe: AP\# SG* Excepl tor models for Europe: API SF of SG*
Withotat oil filter		3.0	2-5/8 q t	
Cooting system fWith reservols)		10.0	8-3/4 dt	Anti-freeze coolant (Ethylene glycol base)
Menual transmission gear oil		2.8	$4-7 / 8 \mathrm{pt}$	AP! GL-4*
	Europe mode:	3.1	5-1/2 pt	
Difterential gear oil		4.5	2-5/8 pt	AP: GL-5 ${ }^{\text {t }}$
	Europe modes	2.1	3-3/4 pt	
Automatic transmission flaid		7.7	$6 \mathrm{6} 3 / 4 \mathrm{q}$	Type DEXRON ${ }^{\text {+ }}$
	Europe model	8.7	7-5/8 q\%	
Power steering fluid		1.3	1-1/8 q	Type DEXRO* ${ }^{\text {TM }}$
	W\|th SUPER hicas	2.0	1-3/4 q	
Brake and clutch fuid		-	-	
Multi-purpose grease		-	\cdots	NLGi No. 2 (Lithium soap base)

[^5]
SAE Viscosity Number

- For warm and cold areas: 10W-30 is preferable for ambient temperatures above $-20^{\circ} \mathrm{C}$ ($-4^{\circ} \mathrm{F}$).
- For hot areas: 20W-40 and 20W-50 are suitable.
- On turbo engines, 5 W -20 is not recommended. $5 \mathrm{~W}-30$ should be used only under extremely cold condtions.

7100:3

- For warm and cold areas: 75W-90 for the transmission and 80W-90 for the differential gear are preferable.
- For hot areas: 90 is suitable for ambient temperatures below $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$.

Checking Drive Belts

1. Inspect for cracks, fraying, wear or of adhesion. If necessary, replace with a new one.
2. Inspect drive belt deflection by pushing on the belt midway between pulleys.
Adjust if belt deflection exceed the limit.
Belt deflection:
Unit: 7 mm (in)

	Used belt deflection		Deflection of new belt
	Limit	Deflection after adjustment	
Alternator	11.5 (0.453)	$\begin{gathered} 7-8 \\ (0.28-0.31) \end{gathered}$	$\begin{gathered} 6.5-7.5 \\ (0.256 \times 0.295) \end{gathered}$
Air conditioner compressor	12.5 (0.492)	$\begin{gathered} 8+9 \\ (0.31-0.35) \end{gathered}$	$\begin{gathered} 7-8 \\ (0.28-0.31) \end{gathered}$
Power steering oil pump	$19(0.75)$	$\begin{gathered} 12-13.5 \\ (0.472-0.531) \end{gathered}$	$\begin{gathered} 10.5 \cdot 11.5 \\ (0.413-0.453) \end{gathered}$
Applied pushing force	$98 \mathrm{~N}(10 \mathrm{~kg} .22 \mathrm{lb})$		

Inspect drive belt deffection when engine is cold.

1. Perform self-diagnosis step 2 of Automatic Air Con* ditioner system, referring to the following notes:
1) Turn ignition switch from " OFF " to " ON ".
2) Press both "AUTO" and "OFF" switches for at least 5 seconds.
3) Press "AUTO" switch 2 times.
4) Contirm indication of the A/C display shown at left.
5) Wait 10 seconds before turning ignition switch off.
2. Open drain cock at the bottom of radiator, and remove radiator cap.

Changing Engine Coolant (Cont'd)

SNA\&472B
3. Open drain plugs on both sides of cylinder block.

- Left side drain plug is located beside the leff side engine mounting.

4. Open air release plug to drain coolant.
5. Flush cooling system by running fresh water through radiator.
6. Close drain cock and tighten drain plugs securely.

- Apply sealant to the draln plug thread.
© 34 - $44 \mathrm{~N} \cdot \mathrm{~m}$
(3.5 - $4.5 \mathrm{~kg}-\mathrm{m}, 25-33 \mathrm{ft}-\mathrm{lb}$)

7. Fill radiator slowly with proper mixture of coolant and water. Fill reservoir tank up to the " H " level. Then install radiator cap and close air release plug.

Coolant capacity (With reservoir tank):
$10.0 \ell(8-3 / 4 \mathrm{Imp} 9 t)$

Reservoir tank:

$0.6 \ell(1 / 2 \mathrm{Imp} q \mathrm{t})$

Pour coolant through coolant hiller neck slowly to allow air in system to escape.
8. Start engine and warm it up until it reaches normal operating temperature. Then race engine 2 or 3 times under no-load. Watch coolant temperature gauge for signs of overheating.
9. Stop engine. After it completely cools down, refill radiator up to filler opening. Fill reservoir tank up to the " H ' level.
10. Check drain cock and drain plug for any sign of leakage.

Checking Cooling System

CHECKING HOSES

Check hoses for improper attachment and for leaks, cracks, damage, loose connections, chafing and deterioration.

Checking Cooling System (Cont'd)

CHECKING RADIATOR CAP

Apply pressure to radiator cap with cap tester to see if it is satisfactory.

Radiator cap relief pressure:
$78-98 \mathrm{kPa}$
(0.78-0.98 bar, $\left.0.8-1.0 \mathrm{~kg} / \mathrm{cm}^{2}, 11-14 \mathrm{psi}\right)$

Pull the negative-pressure valve to open it. Check that it closes completely when released.

CHECKING COOLING SYSTEM FOR LEAKS

Apply pressure to the cooling system with cap tester to check for leakage.

Testing pressure:
$98 \mathrm{kPa}\left(0.98 \mathrm{bar}, 1.0 \mathrm{~kg} / \mathrm{cm}^{2}, 14 \mathrm{psi}\right)$
CAUTION:
Higher pressure than the specifled value may cause damage to radlator.

Checking Fuel Lines

Inspect fuel lines and tank for improper attachment and for leaks, cracks, damage, loose connections, chafing and deterioration.
If necessary, repair or replace faulty parts.

CAUTION:

Tighten high-pressure rubber hose clamp so that clamp end is 3 mm (0.12 in) from hose end.
Tightening torque specifications are the same for all rubber hose clamps.
Ensure that screw does not contact adjacent parts.

Changing Fuel Filter
 WARNING:

Before removing fuel filter, release fuel pressure from fuel line to eliminale danger.

1. Perform "FUEL PRESSURE RELEASE" in "WORK SUPPORT" mode and release fuel pressure to zero.
2. Turn ignition switch off.
3. Disconnect fuel pump relay or fuel pump connector.
4. Start engine.
5. After engine stalis, crank engine two or three times to make sure that fuel pressure is released. Then turn ignition switch off and reconnect fuel pump relay or fuel pump connector.
6. Loosen fuel hose clamps.
7. Replace fuel filter.

- Be careful not to spill fuel over engine compartment. Place a shop towel to absorb fuel.
- Use a high-pressure type fuel filter. Do not use a synthetic resinous fuel filter.
- When tightening fuel hose clamps, refer to "Checking Fuel Lines".

Changing Air Cleaner Filter

The viscous paper type filter does not need cleaning between renewals.

Changing Engine Oil

WARNING:

Be careful not to burn yourself, as the engine oll is hot.
t. Warm up engine, and check for oll leakage from engine components.
2. Remove drain plug and oil filler cap.

ENGINE MAINTENANCE

Changing Engine Oil (Cont'd)

3. Drain oll and refill with new engine oll.

Oil capacity (Refill): ℓ (Imp qt)
Non-Turbo
With oll filter
3.4 (3)

Without oll fither 3.0 (2-5/8)

Turbo (Without oil cooler)
With oil fitter
3.4 (3)

Without oil filter 3.0 (2-5/8)

CAUTION:

- Be sure to clean drain plug and install with new washer.

Oil pan drain plug:
T1: 29-39 N•m
($3.0-4.0 \mathrm{~kg}-\mathrm{m}, 22-29 \mathrm{ft}+\mathrm{b}$)

- Use recommended engine oll "API SG".
- Since the oll refill capacity changes depending on the oil temperature and drain time (more than 2 minutes is recommended), use these values as a reference and be certain to check with the dipstick when changing the oil.

4. Check oil level.
5. Start engine and check area around drain plug and oil filter for oil leakage.
6. Run engine for a few minutes, then turn it off. After several minutes, confirm oil level again.

Changing Oil Filter

1. Remove oil filter with a suitable tool.

WARNING:

Be careful not to burn yoursell, as the engine and engine oil are hot.

Changing Oil Filter (Cont'd)

2. Before installing a new oil filter, clean the oil filter mounting surface on cylinder block, and coat the oil filter rubber seal with a little engine oil.
3. Screw in the oil filter until a slight resistance is felt, then tighten an additional $2 / 3$ turn.
4. Add engine oll.

Reter to Changing Engine Oil.

Changing Spark Plugs

1. Disconnect ignition coll harness connector.
2. Loosen ignition coil fixing bolts and pull out coil from intake manifold coliector.

- When changing No. 5 and No. 6 cylinder spark plugs, remove balance tube first. (O -rings of balance tube may be reused, if they are not worn.)

3. Remove spark plugs with suitable spark plug wrench. Spark plug (Platinum-tipped type):

	Non-turbo	Turbo
Standard type	PFR6B-11	PFR6B-11C
Hot type	PFR5B-11	PFR5B-11C
Cold type	PFR7B-11	PFR7B-11C

© $20-29 \mathrm{~N} \cdot \mathrm{~m}(2-3 \mathrm{~kg}-\mathrm{m}, 14-22 \mathrm{ft}-\mathrm{b})$

Changing Spark Plugs (Cont'd)

- Checking and adjusting plug gap are not required between renewals.
- Do not use a wire bresh for cleaning.
- If plug tip is covered with carbon, spark plug cleaner may be used.

Cleaner alr pressure:
Less than $588 \mathrm{kPa}\left(5.9 \mathrm{bar}, 6 \mathrm{~kg} / \mathrm{cm}^{2}, 85 \mathrm{ps}\right.$)
Cleaning time:
Less than $\mathbf{2 0}$ seconds

Checking Vapor Lines

1. Visuafly inspect vapor lines for improper attachment and for cracks, damage, loose connections, chafing and deterioration.
2. Inspect vacuum relief valve of fuel tank filler cap for clogging, sticking, etc.
Refer to "EVAPORATIVE EMISSION CONTROL SYSTEM" in EF \& EC section.

ENGINE MAINTENANCE

Checking Exhaust Gas Sensor

Checking procedure

Checking A.S.C.D. Vacuum Line

Check vacuum control hose and connections for airtightness, improper attachment, breakage, chating, cracks, clogging, deformation and deterioration.
If necessary, replace A.S.C.D. actuator assembly.

Checking Clutch Fluid Level and Leaks

If fluid level is extremely low, check clutch system for leaks.

Checking Clutch System

HYDAAULIC TYPE

Check tiuid lines and operating cylinder for improper attachment, cracks, damage, loose connections, chafing and deterioration.

Checking M/T Oil

1. Check for oil leakage.
2. If leakage is found, check oil level.

Never start engine while checking oil level.
Filler plug:
(1) $25-34 \mathrm{~N} \cdot \mathrm{~m}(2.5-\mathbf{3 . 5} \mathrm{kg}-\mathrm{m}, 18-25 \mathrm{ft}-\mathrm{lb})$

Changing M/T Oil

1. Drain oil.
2. Refill with recommended new gear oil and check oil level.

For turbo models

3. Turn ignition switch ON and short the circuit between the terminals for differential oil warning lamp switch on differential case.
Keep oll pump operating for 1 minute to circulate oil in transmission oil cooler system. (Oll pump for differential oll cooling system operates at the same time.)
4. Top up with recommended new gear oil.
5. Check oil level.

Ofl capacity:

For turbo

$3.1 \ell(5-1 / 2 \mathrm{lmp} \mathrm{pt})$

For non-turbo

$2.8 \ell(4-7 / 8 \mathrm{Imp} \mathrm{pt})$
Filler and drain plugs:
(1): $25-34 \mathrm{~N} \cdot \mathrm{~m}(2.5-3.5 \mathrm{~kg}-\mathrm{m}, 18-25 \mathrm{ft}-\mathrm{lb})$

Checking A/T Fluid

1. Check for fluid leakage.

CHASSIS AND BODY MAINTENANCE

Checking A/T Fluid (Cont'd)

2. If leakage is found, check fluid level.

Fluid level should be checked using "HOT" range on dipstick at fluid temperatures of 50 to $80^{\circ} \mathrm{C}\left(122\right.$ to $\left.176^{\circ} \mathrm{F}\right)$ after vehicle has been driven approximately 5 minutes in urban areas after engine is warmed up. But it can be checked at fluid temperatures of 30 to $50^{\circ} \mathrm{C}\left(86\right.$ to $\left.122^{\circ} \mathrm{F}\right)$ using "COLD" range on dipstick for reference after engine is warmed up and before driving. However, fluid level must be rechecked using 'HOT" range.

1) Park vehicle on level surface and set parking brake.
2) Start engine and then move selector lever through each gear range, ending in " P ".
3) Check fluid level with engine idling.
4) Remove dipstick and wipe it clean with lint-free paper.
5) Reinsert dipstick into charging pipe as far as it wili go.
6) Remove dipstick and note reading. If level is at low side of either range, add fluid to the charging pipe.

Do not overfill.

Changing A/T Fluid

1. Drain fluid by removing oil pan.
2. Replace gasket with a new one.
3. Refill with recommended A / T fluid and then check fluid level.

Oll capacity (With torque converter):
vg30DE
$8.3 \ell(7-1 / 4 \mathrm{lmp} q \mathrm{t})$
VG30DETT
$8.7 \ell(7-5 / 8 \mathrm{mp} \mathrm{q})$

Checking Propeller Shaft

Check propeller shaft and center bearing for damage, looseness or grease leakage.
If greasing points are provided, supply grease as necessary.
Refer to section PD.

Checking Differential Gear Oil

1. Check differential carrier for oil leakage.
2. If leakage is found, check oil level.

Filler plug:
툥: $39-59 \mathrm{~N} \cdot \mathrm{~m}(4-6 \mathrm{~kg}-\mathrm{m}, 29-43 \mathrm{ft}-\mathrm{lb})$

Changing Differential Gear Oil

1. Drain oil and retill with recommended new gear oil.
2. Check oll level.

Oil capacity:
For non-turbo
$1.5 \ell(2-5 / 8 \mathrm{mp} \mathrm{pt})$
For turbo
$2.1 \ell(3-3 / 4 \mathrm{Imp} \mathrm{pt})$
Drain plug:
©

Checking Brake Fluid Level and Leaks

- If fluid level is extremely low, check brake system for leaks.

Checking Brake Lines and Cables

- Check brake fluid lines and parking brake cables for improper attachment and for leaks, chafing, abrasions, deterioration, etc.

Checking Disc Brake

- Check condition of disc brake components.

ROTOR

- Check condition and thickness.

	Front		Rear
Disc brake type	OPZ25V	OPF25V	OPZ11VB
Standard thick- ness	$26.0(1.024)$	$30.0(1.781)$	$18(0.71)$
Minimum thick- ness	$24.0(0.945)$	$28.0(1.102)$	$16.0(0.630)$

Changing Brake Fluid

1. Drain brake fluid from each air bleeder valve.
2. Refill until new brake fluid comes out from each air bleeder valve.
Use same procedure as in bleeding hydraulic system to refill brake fluid.
Refer to section BR.

- Refill with recommended brake fluid "DOT 3".
- Never reuse drained brake fluid.
- Be careful not to splash brake fluid on painted areas.

Checking Brake Booster Vacuum Hoses, Connections and Check Valve

Check vacuum lines, connections and check valve for improper attachment, air tightness, chating and deterioration.

> Unit: mm (in)

CALIPER

- Check operation and for leakage.

CHASSIS AND BODY MAINTENANCE

Checking Disc Brake (Cont'd)

PAD

- Check for wear or damage.

Unit: mm (in)

Front	Rear	
Disc brake type	OPZ25V OPF25V	OPZ11VB
Standard thickness	$10.0(0.394)$	$11.5(0.453)$
Minimum thickness	$2.0(0.079)$	

Balancing Wheels

- Adjust wheel balance using road wheel center.

Wheel balance (Maximum allowable unbalance at rim flange):

Refer to S.D.S.
Tire balancing weight: Reter to S.D.S.

Tifes without directionat indeators

Tire Rotation

FOR NON-TURBO

- Do not include the T-type or space saver spare tire when rotafing the tires.

Wheel nuts:

M: $98-118 \mathrm{~N}-\mathrm{m}$
($10.0-12.0 \mathrm{~kg}-\mathrm{m}, 72-87 \mathrm{ft}-\mathrm{lb})$

- Tires marked with directional indicators can only be rotated between front and rear.

FOR TURBO

The front and rear tires cannot be rotated because they are different sizes.
The left and right side tires can be swapped only when the tires do not have directional indicators.

Checking Steering Gear and Linkage Steering gear

- Check gear housing and boots for looseness, damage or oil leakage.
- Check connection with steering column for looseness.

STEERING LINKAGE

- Check ball joint, dust cover and other component parts for looseness, wear, damage or grease leakage.

Checking Power Steering Fluid and Lines

- Checking fluid level (Without SUPER HICAS system)

Fluid level should be checked using "HOT" range on dipstick at fluid temperatures of 50 to $80^{\circ} \mathrm{C}\left(122\right.$ to $\left.176^{\circ} \mathrm{F}\right)$ or using "COLD" range on dipstick at fluid temperatures of 0 to $30^{\circ} \mathrm{C}$ (32 to $86^{\circ} \mathrm{F}$).

CAUTION:

Do not overfill.

- Checking fluid level (With SUPER HICAS system) Maintain the fluid level so that the lower surface of the float is maintained between the "L." and " H " marks on the gauge rod. The fluid level should be checked when the engine is stopped and the fluid temperature is normal.
CAUTION:

Do not overfill.

- Check lines for improper attachment, leaks, cracks, damage, loose connections, chafing and deterioration.

Checking Power Cylinder (With SUPER HICAS system)

- Check power cylinder and linkage tor damage, looseness and leakage of oil or grease.

Checking Exhaust System

- Check exhaust pipes, muffier and mounting for proper attachment, leaks, cracks, damage, loose connections, chafing and deterioration.

Lubricating Locks, Hinges and Hood Latches

Checking Seat Belts, Buckles, Retractors, Anchors and Adjusters

CAUTION:

1. All seat beft makembilet, ixcluding retractors and attaching hardwares such as puide raid set, etc., should be inspested after amy colliston. Missan recommends thet all seat belt acosembias in use during a collision be repasad untess the collision was mindor and the betts show no damage ond continue to operate properly. Sert belt asemblies not in use during a callizion should aleo be inspected and ruplefed if withor dumway or improper operation is noted.
2. If the condition of any component of satat belt assembly is quectionable, do not haw it repulred, but replaced as sath bett asominty.
3. If whbing is cut, frayed, or damaget, reptece belt enembly.
4. Do not apill drinks, of, otc, on ianer lap bett buckte. Never oil tongese and buteklo.
5. Une a NISSAN genuine soot bolt saswimbly.
(1) Anchor boit

43 - $55 \mathrm{~N}-\mathrm{m}$
$(4.4$ - $5.6 \mathrm{~kg}-\mathrm{m}, 32$ - 41 ft tb$)$

Checking Body Corrosion

Visualiy check the body sheet metal panel for corrosion, pain damage (scratches, chipping, rubbing, etc.) or damage to the anti-corrosion materials. In particular, check the following locations.
Hemmed portion
Hood front end, door lower end, trunk lid rear end, etc.
Panel joint
Side sill of rear fender and center pillar, rear wheel housing of rear fender, around strut tower in engine compartment, etc.

Panel edge

Trunk lid opening, sun roof opening, fender wheel-arch flange, fuel filfer lid flange, around holes in panel, etc.

Parts contact

Waist moulding, windshield moulding, bumper, etc.

Protectors

Damage or condition of mudguard, fender protectof, chipping protector, etc.

Anti-corrosion materials

Damage or separation of anti-corrosion materials funder the body.

Drain holes

Condition of drain holes at door and side sill.
When repairing corroded areas, tefer to the Corrosion Repair Manual.

Engine Maintenance

INSPECTION AND ADJUSTMENT
Drive belt deflection

Oll capacity (Refill)
Non-Turbo
Unlt: \boldsymbol{e} (lmp at)

With oil filfer	3.4 (3)
Without oil fitter	$3.0(2-5 / 8)$

Turbo (Without oil cooler)

Unik: $\hat{\varepsilon}$ (Imp qt)

Uniz: $\bar{\varepsilon}$ (lmp qt)	
With oil fifter	$3.4(3)$
Without oil filter	$3.0(2-5 / 8)$

Coolant capacity

Unit: $\ell(\mathrm{mmp} q \mathrm{q})$

	Unit: ℓ (imp qt)
With reservoir tank	$10.0(8-3 / 4)$
Reservoit tank	$0.6(1 / 2)$

Spark plug
Non-Turbo

Standard type	PFR6B-11
Hot type	PFR5B-11
Cold lype	PFR7B-11

Turbo

Standsad type	P\%R68-110
Hot type	PFR58-110
Cold type	PrR78-11C

Chassis and Body Maintenance

INSPECTION AND ADJUSTMENT

Clutch

			Unit: mm (im
Appled modet	L.H.D.	F.H.D.	
		VG300E	VG3ODETT
Pedal free height	$\begin{gathered} 183-193 \\ (7.20-7.60) \end{gathered}$	$\begin{gathered} 211-221 \\ \{8.31-8.70\} \end{gathered}$	$\begin{gathered} 197-207 \\ (7.76-8.15\} \end{gathered}$
Pedatatree play	t-3 (0.04-0.12)		

Front axle and front suspension (Uniaden)*

Camber degree	$-1^{*} 35^{\prime}$ to $-0^{\circ} 05^{\prime}$
Caster degree	$9^{\circ} 00^{\prime} \cdot 10^{\circ} 00^{\prime}$
Toe-in \quad mmin (in)	$0+2(0-0.68)$
(Fotal toe-in angle) degree]	$0^{\prime}-11$
Kingpir inclination degree	$12^{\circ} 100^{\circ} \times 13^{\circ} 40^{\circ}$
Front wheel turning angle Full turn insidefoutside degree	$32^{5}-36^{\circ} / 27^{5}-31^{*}$

*: 羊ifel, radiator coolant and engine oil fult.
Spaze tire, jack, fanded tools and mats in cesignated positions.

Rear axde and rear suspension (Unladen)*

Cammber	degree	$-1^{\prime \prime} 35^{\prime}$ to $-0^{\prime \prime} 35^{\prime}$
Toe-in	mmin	0-4 (0-0.76)
(Total toerif angle)	degree	$\theta^{\prime}-22^{\prime}$

*: Fuel, radator coolant and engine oil filit.
Spare tire, jack, hand tools and mats in designated positions.

Wheel bearing

	Front	Rear
Wheel bearing axie and play Mm (in)	$0.05(0.6020)$ or less	
Whegel bearing lock mut		
Tightening torque 	$\begin{gathered} 206-284 \\ (21-29 \\ 152-210) \end{gathered}$	$\begin{gathered} 206-275 \\ (21-28 \\ 152-203\} \end{gathered}$

Brake

Unit: $\mathrm{mm}(\mathrm{tn}$

Disc brake	
Pad	
Standard thickness	
OPZ25V OP'F25V	10.0 (0.394)
OPZ11VB	15.5 (0.453)
Minimum thickness	
$\begin{aligned} & \mathrm{OPZ25V} \\ & \mathrm{OPF} 25 \mathrm{~V} \end{aligned}$	2.0 (0.079)
OPZ11VB	2.0 (0.079)
Rotor	
Standard thickness	
OPZ25V	26.0 (1.024)
OPF25V	30.0 (1.18暂)
OP\%7VB	\$8 (0.71)
Mifimum thickness	
OP225V	24.6 (0.945)
OPF25V	28.0 (1.102)
OPZ11V8	16.0 (0.630)
Peda	
Free height.	
M/T	186-196 (7.32-7.72)
AT	195-205 (7.68-8.97)
Free play al clevis	7-3(0.04-0.72)
Depressed height (under force of $490 \mathrm{~N}\{50 \mathrm{~kg}, 110$ lb) with engine running	
M/T	
Without A. B.S.	85 (3.74) or more
With A.B.S.	105 (4.13) or more
A/T	
Without A.E.S.	105 (4.13) or mory
Witm A,B.S.	110 (4.33) or mote
Parking brake	
Number of notches lat puting force 196 N (20 tog, 44 bl]	$6 \cdot 7$

Wheel balance

Wheel balance (Naximum allowable unbalance at rim tlangel g(oz)	10 (0.35)
Tire batance weight $\quad \theta\left\{\begin{array}{l}\text { az }\end{array}\right.$	$5-60\{0.18 \cdot 2.12\}$ Spacing 5 (0.18)

TIGHTENING TORQUE

Unit	$\mathrm{N} \cdot \mathrm{m}$	kg-m	$\mathrm{ft}-\mathrm{lb}$
Cluteh			
AS.C.D. cancel switch arfd clutch 	12-15	1.2-1.5	9-11
Manual transmission			
Drain and filler plugs	25-34	2.5-3.5	18-25
Final drive			
Sratn plag	39-59	4-6	29.43
Filaer plug	39-59	4-6	29-43
Fronk axie and tront suspension			
Tie-rod lock nut	78-98	8.0-10.0	$58 \cdot 72$
Rear axle and rear sispension			
Toe adjusting pan	69.88	7.0-9.0	51-65
Camber ad]usting - 1 in (Modess without SUPER HICAS)	69-88	7.0-9.0	57-65
符ower link lock nut (Mode?s with SUPER H(CAS)	37-45	3.8-4.7	$27+34$
Praxe system			
Aif bleed valve	7-9	$0.7 \cdot 0.9$	5.1-6.5
Erake lamp switch lock nut	12-45	$1.2+1.5$	9-11
Grake booster input rod lock nut	16-22	9.6-2.2	$12 \cdot 16$
Wheel and tire			
Wheel nut	98-118	10.0-12.0	$72-87$

ENGINE MECHANICAL

section $^{2} \mathbf{~ M}$

CONTENTS

PRECAUTIONS EM- 2
PREPARATION EM- 3
OUTER COMPONENT PARTS EM- 6
COMPRESSION PRESSURE EM- 9
OIL PAN EM-10
TIMING BELT EM-13
oll seal replacement EM-2
THROTTLE CHAMBERS EM-23
CYLINDER HEAD EM-26
TURBOCHARGERS EM-38
INTERCOOLERS EM-44
ENGINE REMOVAL EM-45
CYLINDEA BLOCK EM-49
SERVICE DATA AND SPECIFICATIONS (S.D.S.) EM-62

Liquid Gasket Application Procedure

a. Before applying liquid gasket, use a scraper to remove all traces of old liquid gasket from mating surface.
b. Apply a continuous bead of liquid gasket to mating surfaces. (Use Genuine Liquid Gasket or equivalent.)

- Be sure liquid gasket is 3.5 to 4.5 mm (0.138 to 0.177 in) wide (for oil pan).
- Be sure liquid gasket is 2.0 to 3.0 mm (0.079 to 0.118 in) wide (in areas except oll pan).
c. Apply liquid gasket to inner sealing surface around entire perimeter area.
(Assembly should be done within 5 minutes after coating.)
d. Wall at least 30 minutes betore refilling engine oil and engine coolant.

Parts Requiring Angular Tightening

- Some important engine parts are tightened using an angular-tightening method rather than a torque setting method.
- If these parts are tightened using a torque setting method, dispersal ol the tightening force (axial bolt force) will be two or three times that of the dispersal produced by using the correct angular-tightening method.
- Although the torque setting values (described in this manual) are equivalent to those used when bolts and nuts are tightened with an angular-lightening method, they should be used for reference only.
- To assure the satisfactory maintenance of the engine, bolts and nuts must be tightened using an angular-tightening method.
- Before tightening the bolts and nuts, ensure that the thread and seating surfaces are clean and then coated with engine oit.
- The bolts and nuts which require the angutar-tightening method are as follows:
(1)Cylinder head bolts
(2) Connecting rod cap nuts

SPECIAL SERVICE TOOLS

Tool number Tool name	Description	
STO5015000 Engine stand assembly (1) Sr05011000 Engine stand (2) 5705012000 Base	Disassembling and assembing	
KV10106500 Engine stand straft		
KV101t000 Engine sub-attachment		
ST10120000 Cylinder head bolt wrench	Loosening and tightenforg cylinder head bolt	
KV10111300 Valve spring compressor	Disassembing and assembling valve components	
(1) KV10t0750: Valve oll seal critt (2)KV10111400 Attactment	Instating vaive oll seal	
ST27180001 Steering wheel puller	Removing crankshatt pulley	
KV10114400 Exhaust gas sensor wrench	Loosening or tightening exhausl gas sensor	

Taol number: Tool name	Oescription	
(1) EG14860000 Push-pull gauge (2) KV10112000 Hook	Adiusting timing belt tension	
EM03470000 Piston ring compressor	installing piston assembly into cylinder bore	
ST16610001 Pilot bushing pulleq	Ramoving crankshaft pilot bushing	
KV10:11100 Seal cutter	Removing oil pan	
WS 39930000 Tube presser	Pressing the tube of liquid gasket	
ST33200000 Dritt	Instaling camsinat oil seal	
KV38100300 Dafit	Instaling front oil seal	
$\$ 715310000$ Dritt	Installing rear oit seal	

COMMERCIAL SERVICE TOOLS

Thol nathe

SEMOSAC
EM-6

Turbo model

Right side
146.3-8.3 10.64 - $0.85 .4 .6 \cdot 6.1)$

(1) 16 - $27(7.6 \cdot 2.1,12 \cdot 15)$ (1) $6.3 \cdot 8.3$ (0.64 - 0.85. $4.6 \cdot 0.1)$

段 $\mathbf{2 0}$
(1.5-2.0.
(11.14)

Qu $15 \cdot 20\{1.5 \cdot 2.0,11 \cdot 14\}$
$6.3 \cdot 8.3(0.64 \cdot 0.85 .4 .6 \cdot 6.1\}$ (20.1-5.1.30.37)

4 4

- $\mathrm{N}=\mathrm{m}(\mathrm{kg}-\mathrm{m}, \mathrm{ft} \cdot \mathrm{t})$

H
Tointake
manifold collector blante tube
2,5.3

(4) N.mikem, ft-H)

Measurement of Compression Pressure

1. Warm up engine.
2. Tum ignition switch off.
3. Retoase fue pressure.

Reter to "Releasing Fuel Pressure" in section EF \& EC.
4. Remove all spark plugs.
5. Disconnect crank angle sensor harness comnector.
6. Attach a compression tester to No. 1 cylinder.
7. Depress accelerator pedal fully to keep throtte valve wide open.
8. Crank engine and record highest gauge indication.
9. Repeat the measurement on each cylinder as shown.

Always use a fully-charged battery to obtain specilied engine revolution.

Compression pressure: kPa (bar, kg/Cm ${ }^{2}$, psi)/300 rpm Standard

1,285 (12.85, 13.1, 186)
Minimum
981 (9.81, 10.0, 142)
Difference fimit between cylinders
98 (0.98, 1.0. 14)
10. If cylinder compression in one or more cylinders is low, pour a smalf amonnt of engine oil into cylinders through the spark pilig holes and retest compression.

- If adding oll helps compression, piston rings may be worn or damaged. If so, replace piston rings after checking piston.
- If pressure stays low, a valve may be sticking or seating improperfy, inspect and repair valves and valve seats. (Pefer to S.D.S.) If valves or valve seats are damaged excessively, replace them.
- H compression in any two adiacent cylmaters is low and u adding oil does not help compression, there may be leakage past gasket surface. If so, replace cylinder head gasket.

Removal

1. Drain engine oil.
2. Remove engine under cover.
3. Remove oil filter and bracket.
4. Remove engine rear gussets from both sides.
5. Disconnect A/C tube clamps as shown.
6. Disconnect steering column lower joint.
7. Remove tension rod fixing bolts from both sides.
8. Loosen transverse link bolts on both sides.

Removal (Cont'd)

9. Set a suitable transmission jack under the suspension member.

- At this time, hoist engine with engine slingers.

10. Remove suspension member fixing bolts.
11. Remove engine mounting bolts from both sides and then slowiy lower transmission jack.
12. Remove oil pan bolts.
13. Remove oil pan.
(1) Insert Tool between cylinder block and oil pan.

- Do not drive seal cutter Into oil pump or rear of seal retainer, as aluminum mating surfaces may be damaged.
- Do not insert screwdriver, or oll pan flange may be deformed.
(2) Slide Tool by fapping its slde with a hammer, and remove oil pan.
(3) Remove oil pan.

Installation

1. Before installing oil pan, remove all traces of liquid gasket from mating surface using a scraper.

- Also remove traces of liquid gasket from cylinder block mating surface.

OIL PAN

Installation (Cont'd)

2. Apply sealant to oll pump gasket and rear oil seal retainer gasket.
3. Apply a continuous bead of liquid gasket to oll pan mating surface.
Use Genuine Liquid Gasket or equivalent.

- Be sure liquid gasket is 3.5 to $4.5 \mathrm{~mm}(0.138$ to 0.177 in) wide.

4. Apply liquid gasket to inner sealing surface as shown in figure.

- Attaching should be done within 5 minutes after coating.

5. Install oil pan.

- Insfall bolts/nuts in their reverse order of removal.
- Wait at least 30 minutes betore refiling engine oil.

CAUTION:

a. Do not bend or twist timing belt.
b. After removing timing beft, do not turn crankshaft and camshaft separatety because valves will strike piston heads.
c. Make sure that timing belt, camshaft sprocket, crankshaft sprocket, idier puiley and auto-tensioner are clean and free ol oll and water.

(I): N.m (kg.m, ft•lb)

Removal

1. Remove engine under cover.
2. Drain coolant from both cylinder block drain plugs, and radiator drain cock.

3. Remove radiator.
4. Remove drive belts, cooling fan and coupling.
5. Remove crankshaft pulfey bolt.
(At this time, remove starter motor and set a sultable tool to ring gear so that crankshaft cannot rotate.)
6. Remove crankshaft pulley using Tool.

EM-14

TIMING BELT

Removal (Cont'd)

7. Remove water inlet and outlet.
8. Remove front timing belt covers.
9. Install a suitable stopper bott into tensioner arm of autotensioner so that projection of auto-tensioner pusher does not change.
10. Set No. 1 cyllnder at T.D.C. on its compression stroke.
11. Remove auto-tensioner and timing belt.

Inspection

Visually check the condition of timing belt.
Replace if any abnormalify is found.
ltern to check
Tocth is brokenf
tooth root is cracked.
Oack surface is
crackediwom
stuck to belt.

Inspection (Cont'd)

AUTO-TENSIONER

Check for oil feaks from pusher rod and diaphragm.

Installation

1. Contirm that No. 1 cylinder is set at T.D.C. on its compression stroke.
2. Align matching marks on camshaft and crankshaft sprockets with aligning marks on rear belt cover and oil pump housing.
3. Remove all spark plugs.

TIMING BELT

Installation (Cont'd)

6. Set timing belt.
a. Ensure timing belt and sprockets are clean and tree from oil or water. Do not bend or twist timing belt.
b. Allgn white lines on timing belt with matching mark on camshaft sprocket and crankshaft sprocket.
c. Point arrow on timing belt towards the front.

Installation (Cont'd)

7. Push auto-tensioner slightly towards timing belt to prevent belt from slipping.
While pushing, turn crankshat 10 degrees clockwise and tighten net ((1) and bolts (2), (3) to 16 to $21 \mathrm{~N} \cdot \mathrm{~m}$ (1.6 to 2.1 $\mathrm{kg} \cdot \mathrm{m}, 12$ to $15 \mathrm{ft}-\mathrm{lb}$).
At this time, do not push auto-tensioner hard or bell will be adjusied too tightly.
8. Turn crankshaft 120 degrees counterclockwise.
9. Turn crankshaft clockwise and set No. 1 cylinder at T.D.C. on its compression stroke.
10. Loosen nut (1) and bolts (2), 3) $1 / 2$ turn.
11. Pusb the end of pusher with approx. 67.7 to $81.4 \mathrm{~N}(6.9$ to 8.3 $\mathrm{kg}, 15.2$ to 18.3 lb force using Tool (push-pul! gauge) and tighten nut (©) and bolts ((2), (3)) to 16 to $21 \mathrm{~N} \cdot \mathrm{~m}$ (1.6 to 2.1 $\mathrm{kg}-\mathrm{m}, 12$ to $15 \mathrm{ft}-\mathrm{lb})$.
If deflection of timing belt exceeds specification in procedure 15., change applied pushing force.
12. Turn crankshaft 120 degrees clockwise.
13. Turn crankshaft 120 degrees counterclockwise and set No. 1 cylinder at T.D.C. on its compression stroke.
14. Prepare a suitable steel plate as shown.

TIMING BELT

Installation (Cont'd)

15.

(1) Set plate on each position of timing belt mid-way between pulleys as shown.
(2) Push it with $49 \mathrm{~N}(5 \mathrm{~kg}, 11 \mathrm{lb})$ force using tool (push-pull gauge) and check deflections.

Deflection:

$5.5 \cdot 6.5 \mathrm{~mm}(0.217 \times 0.256 \mathrm{ln})$ or the average of each portion

$$
\frac{(A)+(B)+(C)+(D)}{4}
$$

If not within specification, repeat procedure from step 7 through step 15.
16. Confirm auto-tensioner fixing nuts and bolts are tightened to 16 to 21 Nm (1.6 to $2.1 \mathrm{~kg}-\mathrm{m}, 12$ to $15 \mathrm{ft}-\mathrm{lb})$.

17.

- Remove the auto-tensioner stopper bolt.
- After 5 minutes check the projection of the rod (clearance between tensioner arm and pusher) stays al 3.5 to 5.2 mm (0.138 to 0.205 in).

18. Check the proper installation (no slip or misplacement) of timing belf at each position as shown.

SEFOA9:

19. Install timing belt covers.

VALVE OIL SEAL

1. Remove intake manifold collector and valve cover.
2. Remove timing bett, camshatt sprocket and rear belt cover.
3. Remove camshaft brackets, camshaft and valve lifter.
4. Remove valve spring using Tool or a suitable fool.

- Piston concerned should be set at T.D.C. to prevent valve from falling.

5. Pry out valve oil seal.
6. Apply engine oil to new valve oil seal and install it.

- Before installing valve oil seal, install inner valve spring seat.

OIL SEAL INSTALLATION DIRECTION

CAMSHAFT OL SEAL

1. Remove timing belt and camshaft sprocket.
2. Remove rear belt cover and camshaft oil seal.

Be careful not to scratch camshaft.
3. Apply engine ofl to new camshaft oil seal and install it using Tool or a suitable tool.

FAONT OIL SEAL

7. Remove timing belt and crankshaft sprocket.
8. Remove oil pan and oil pump assembly.
9. Remove front oil seal trom oif pump body.
10. Apply engine oil to new oll seal and install it using Tool or a suitable tool.

REAR OIL SEAL

1. Remove flywheel or drive plate.
2. Remove rear oil seal from retainer.

Be careful not to scratch crankshaft.
3. Apply engine oil to new oil seal and install it using Tool or a suitable tool.

Installation

The intention of this installation and adjustment procedure is to assure accurate synchronization of the throtte chamber opening points.

1. Install accel-drum unit and throttle chambers (right side and left side).

Tightening order:
(1) $11 \rightarrow(2) \rightarrow(3) \rightarrow$ (4):

9-11 $\mathrm{N} \cdot \mathrm{m}$ (0.9 - $9.1 \mathrm{~kg}-\mathrm{m}, 6.5-8.0 \mathrm{ft}-\mathrm{lb})$
(2) $11 \rightarrow$ (2) \rightarrow (3) \rightarrow (4) :

18-22 N.m ($1.8-2.2 \mathrm{~kg}-\mathrm{m}, 13-16 \mathrm{ft}-\mathrm{lb})$
(3) $($ A \rightarrow (B) \rightarrow (C): Tighten by hand
(4) (A) \rightarrow (B) \rightarrow (C):
$5 \mathrm{~N} \cdot \mathrm{~m}(0.5 \mathrm{~kg} \cdot \mathrm{~m}, 3.6 \mathrm{ft}-\mathrm{lb})$
(5) (A) \rightarrow (B) \rightarrow (C):
$20 \mathrm{Nm}(2.0 \mathrm{~kg}-\mathrm{m}, 14 \mathrm{ft}-\mathrm{b})$

- When tightening bolts, free accel-drum unit so that drum unit is left under tts own woight. Do not apply external force to accel-drum unit.
- When replacing throtile chambers only, you need not periorm procedures (3), (4) and (5).
- Before installing each throttle chamber, conifirm that stopper wire is installed in hole of rod pin. If net, install suitable wire.

Installation (Cont'd)

2. Pull out stopper wire of right side throttle chamber in order to secure right side joint lever.
3. Loosen left side throttle chamber lock nut and back off adjusting screw until there is clearance between the screw and joint lever.
4. Set dial gauge on joint lever and set indicator to zero. Confirm that bettom end of adjusting screw is not in contact with joint lever of accelerator drum unit.
5. Pull out left side throttle chamber stopper wire from rod pin.

THROTTLE CHAMBERS

Installation (Cont'd)

6. Turn adjusting screw until dial gauge indicator is within the following range.

Range: 0.07 - $0.13 \mathrm{~mm}(0.0028-0.0051 \mathrm{in})$
Then tighten lock nut.
7. Confirm that the dial gauge indicator is still within the above range.

SELW62
EM-26

CAUTION:

- When installing silding parts such as camshaft, camshaft bracket and ofl seal, be sure to apply new engine of on their stiding surfaces.
- When tightening cylinder head bolls, intake camshaft sprocket bolts and camshaft bracket bolts, apply new engine oil to thread portions and seat surfaces of bolts.
- Before removing camshaft brackets, identify each one with a punch mark so that they may be reinstalled in their original positions.

- Do not pul hydraulic valve lifters upside down, otherwise alr will enter valve lifter, causing it to make a noise.
- Do not disassemble hydraulic valve Jifter.
- Aflach tags to valve lifters so as not to mix them up.
- Valve liffers shoutd be immersed in engine oll.

Removal

1. Remove intake manifold collector.
2. Remove injector pipe assembly.
3. Remove valve covers.

CYLINDER HEAD

Removal (Cont'd)

4. Pemove timing belt.

Refer to "Removal" of TIMING BELT.
5. Remove idfer puliey and its stud bolt.
6. Remove intake manifold.
7. Disconnect front exhatust tube from exhaust manifold.
8. Remove cylinder head with exhaust manifold.

Cylinder head bolts should be loosened in two or three stepe.

Disassembly

1. Remove exhaust manifold from cylinder head.
2. Remove camshaft sprockets.
3. Remove timing betf rear cover.
4. Punch an ldentification mark on each camshaft bracket.
5. Femove camshaft brackets.

Bolts should be loosened in two or three steps.
Before removing camshaft, measure camshaff end play.
6. Remove oil seals, camshafts and hydraulic valve litters.

Disassembly (Cont'd)

7. Remove valve springs with Tool or a suitable tool.
8. Pry out valve oil seals.

Inspection

CYLINDER HEAD DISTORTION

Head surface flatness:
Less than 0.1 mm (0.004 in)
If beyond the specified limit, replace it or resurface it.
Fesurfacing limit:
The resurfacing limit of cylinder head is determined by the cyllnder block resurfacing in an engine.
Amount of cylinder head resurfacing is "A".
Amount of cylinder block resurfacing is " B ".
The maximum limit is as follows;

$$
A+B=0.2 \mathrm{~mm}(0.008 \mathrm{in})
$$

After resurfacing cylinder head, check to make sure that camshat rotates freely by hand. If resistance is felt, cylinder head must be replaced.

Nominal cylinder head helght from camshaft center:
$169.5-169.7 \mathrm{~mm}$ (6.673-6.681 in)

Inspection (Cont'd)

CAMSHAFT VISUAL CHECK

Check camshaft for scratches, seizure and wear.

CAMSHAFT RUNOUT

1. Measure camshaft runout at the center journal.

Runout (Total indicator reading):
Limit $0.1 \mathrm{~mm}(0.004 \mathrm{in})$
2. If it exceeds the limit, replace camshatt.

CAMSHAFT CAM HEIGHT

1. Measure camshaft cam height.

Standard cam height:

$40.405-40.595 \mathrm{~mm}(1.5907 \times 1.5982 \mathrm{~m})$
Cam wear limit:
0.15 mm (0.0059 in)
2. If wear is beyond the limit, replace camshaft.

CAMSHAFT JOURNAL CLEARANCE

1. Install camshaft bracket and tighten bolts to the specified torque.
2. Measure inner diameter of camshaft bearing.

Standard inner dlameter:
$28.000-28.021 \mathrm{~mm}(1.1024 \cdot 1.1032 \mathrm{in})$
3. Measure outer diameter of camshaft journal.

Standard outer diameter:
$27.935-27.955 \mathrm{~mm}(1.0998=1.1008 \mathrm{in})$
4. If clearance exceeds the limit, replace camshaft and/or cylinder head.

Camshaft journal clearance limit:
0.15 mm (0.0059 in)

Inspection (Cont'd)

CAMSHAFT END PLAY

1. Install camshaft in cylinder heac.
2. Measufe camshaft end play.

Camshatt end play:
Standard
$0.03-0.08 \mathrm{~mm}(0.0012-0.0031 \mathrm{in})$

Valve guide clearance

1. Push valve stem out so that its end is even with valve guide height. Measure valve runout by moving valve.

Valve defiection limit (Dial gatige reading): $0.2 \mathrm{~mm}(0.008 \mathrm{in})$
2. Il it exceeds the limft, check valve to valve guide clearance.
a. Measure valve stem diameter and valve guide inmer diameter.
b. Check that clearance is within specification.

Valve to yalve guide clearance limil:
0.10 mm (0.0039 m)
c. If it exceeds the limit, replace valve or valve guide.

VALVE GUIDE REPLACEMENT

1. To remove valve guide, heat cylinder head to 150 to $160^{\circ} \mathrm{C}$ (302 to 320 F).
2. Drive out valve guide with a press funder a 20 kN (2t. 2.2 US ton, 2.0 lmp ton) pressurel or hammer and sultable tool.

Inspection (Cont'd)

3. Ream cylinder head valve guide hole.

Valve guide hole diameter
(for service parts):
Intake and Exhaust
$10.175 \cdot 10.196 \mathrm{~mm}(0.4005 \cdot 0.4014 \mathrm{in})$
4. Heat cylinder head to 150 to $160^{\circ} \mathrm{C}\left(302\right.$ to $\left.320^{\circ} \mathrm{F}\right)$ and press service valve guide onto cylinder head.

Projection "4ss:
$15.1-15.3 \mathrm{~mm}(0.594-0.802 \mathrm{in})$
5. Ream valve guide.

Finished size:
Intake and Exhatist
$6.000-6.018 \mathrm{~mm}(0.2362-0.2369 \mathrm{ln})$

VALVE SEATS

Check valve seats for evidence of pitting at valve contact surface, and reseat or replace if it is worn excessively.

- Before repairing vaive seats, check valve and valve guide for wear. If they have worn, replace them. Then correct valve seat.
- Cut with boih hands to assure a uniform surtace.

CYLINDER HEAD

Inspection (Cont'd)

3. Heat cylinder head to 150 to $160^{\circ} \mathrm{C}\left(302\right.$ to $\left.320^{\circ} \mathrm{F}\right)$.
4. Press tit valve seat until it seats on the bottom.
5. Cut or grind valve seat using suitable tool at the specified dimensions as shown in S.D.S.
6. After cutting, lap valve seat with abrasive compound.
7. Check valve seat contact condition.

VALVE DIMENSIONS

Check dimensions in each valve. For dimensions, refer to S.D.S. When valve head has been worn down to $0.5 \mathrm{~mm}(0.020 \mathrm{in})$ in margin thickness, replace valve.
Grinding allowance for valve stem tip is $0.2 \mathrm{~mm}(0.008 \mathrm{in})$ or less.

Inspection (Cont'd)

VALVE SPRING

Squareness

1. Measure " S " dimension.

Out-ot-square:
Less than $1.8 \mathrm{~mm}(0.071 \mathrm{in})$
2. If it exceeds the limit, replace spring.

Pressure

Check valve spring pressure.
Pressure: N ($\mathrm{kg}_{\mathrm{y}} \mathrm{b}$) at height mm (in) Standard 536.4 (54.7, 120.6) at 26.5 (1.043)

Limil
More than $452.79(46.17,101.80)$ at 26.5 (1.043)
If it exceeds the limit, replace spring.

HYDAAULIC VALVE LIFTEA

1. Check contact and sliding surfaces for wear or scratches.
2. Check diameter of valve lifter.

Outer diameter:
30.955-30.965 mm (1.2187-1.2191 m)
3. Check valve liffer guide inner dlameter.

Inner diameter:
$31.000-31.020 \mathrm{~mm}$ ($1.2205-1.2213 \mathrm{in}$)
Standard clearance between valve lifter and lither guide:
$0.035-0.065 \mathrm{~mm}(0.0014-0.0026 \mathrm{in})$

Assembly

1. Install valve component parts.

- Always use new valve oil seal. (Reter to OIL SEAL REPLACEMENT.)
- Install valve spring (uneven pitch type) with its mazrow pitch aide (painted side) toward cylinder head side.
- To facilitate installation of collet, apply a small amount of grease to a piece of wire or a pencil and attach collet to wire or pencil, as shown.

2. Install camshafts as shown.

- Exhaust camshaft (lett side) has spline for crank angle sensor.
- When installing vaive timing control solenoid valves, apply liquid gasket as shown.

CYLINDER HEAD

Assembly (Cont'd)

3. Install camshaft brackets.

Tighten camshaft bracket bolts gradually in two or three stages.

When instaliing front side camshaft brackets, apply liquid gasket as shown.
4. Apply engine oil to camshaft oil seal lip and install it in place.
Always use new camshaft oil seal.
5. Install rear timing belt cover.
6. Install camshaft sprockets.

When tightening bots, fix camshaft to prevent it from rotating.

Installation

1. Set No. 1 piston at T.D.C. on its compression stroke as follows:
(1) Align crankshaft sprocket aligning mark with mark on oil pump body.
(2) Align camshaft sprocket aligning mark with mark on timing belt rear cover.

(6) Tighten bolts (Q) as shown to 10 to $12 \mathrm{~N} \cdot \mathrm{~m}(1.0$ to $1.2 \mathrm{~kg}-\mathrm{m}$,

7 to $9 \mathrm{ft}-\mathrm{b})$.

Installation (Cont'd)

2. Install cylinder head with new gasket.

- Be sure to install washers between bolts and cylinder head.
- Do not rotate crankshalt and camshaft separately, or valves will hit piston heads.

3. Tighten cylinder head boits in numerical order.

- Tightening procedure
(1) Tighten all bofts to $39 \mathrm{~N} \cdot \mathrm{~m}(4.0 \mathrm{~kg}-\mathrm{m}, 29 \mathrm{ft}-\mathrm{b})$.
(2) Tighten all bolts to $123 \mathrm{~N} \cdot \mathrm{~m}(12.5 \mathrm{~kg}-\mathrm{m}, 90 \mathrm{ft}-\mathrm{tb})$.
(3) Loosen all boits completely.
(4) Tighten all bolts to 34 to $44 \mathrm{~N} \cdot \mathrm{~m}(\mathbf{3 . 5}$ to $\mathbf{4 . 5} \mathbf{k g} \cdot \mathrm{m}, 25$ to 33 (t -(b),
(5) Turn bolts 65 to 75 degrees (L_{1}), 60 to 70 degrees (L_{2}) clockwise or, il an angle wrench is not available, tighten all bolts to $123 \mathrm{~N} \cdot \mathrm{~m}(\mathbf{1 2 . 5} \mathrm{~kg}-\mathrm{m}, 90 \mathrm{tt}-\mathrm{lb})$.

4. Install valve covers.

When installing exhaust side valve covers, apply liquid gasket as shown.
5. Install remaining parts.

Removal

RIGHT SIDE UNIT

1. Remove right part of cowl top.
2. Remove battery.
3. Remove air inlet hose and pipe
4. Disconnect lower pipe from turbocharger unit.
5. Remove A.S.C.D. brackel with wiper motor and solenoid valves.
6. Disconnect exhaust gas sensor harness connector.
7. Remove turbocharger water hoses, and disconnect turbocharger oil inlet tube.
8. Remove two bolts tastening pre-catalyst to turbocharger unit.
9. Remove the following parts;

- oil pressure switch.
- oil filter,
- turbocharger oif return tube,
- front exhaust tube.
- pre-catalyst

10. Disconnect oil hose from oil filter bracket, and turbocharger water tubes from turbocharger unit.

TURBOCHARGERS

Removal (Cont'd)

13. Unbend locking plates for fastening nuts of turbocharger unit.
14. Remove turbocharger unit.

LEFT SIDE UNIT

1. Remove brake master cylinder and brake booster.
2. Disconnect exhaust gas sensor harness connector.
3. Remove air inlet hose and pipe.
4. Disconnect lower pipe from turbocharger unit.
5. Disconnect water tubes.
6. Remove two bolts fastening pre-catalyst to turbocharger unil.

TURBOCHARGERS

Removal (Cont'd)

7. Remove front exhaust tube and pre-catalyst.
8. Disconnect steering lower joint.
9. Remove turbocharger oil return tube and water tubes.
10. Disconnect E.G.F. tube and actuator bracket of turbocharger wastegate valve.
11. Remove manifold cover and tastening nuts.
12. Remove turbocharger unit with exhaust manifold.

TURBOCHARGERS

Inspection

Proceed the following checks. If N.G., replace turbocharger: units.

OIL AND WATER TUBES
Check tubes for clogging.

ROTOR SHAFT

1. Check rotor shaft for smooth rotating.

TURBOCHARGERS

Inspection (Cont'd)

2. Check rotor shaft for carbon deposits.
3. Measure runout of rotor shaft.

Runout (Total indicator reading):

$0.056-0.127 \mathrm{~mm}(0.0022-0.0050 \mathrm{in})$

4. Measure end play of rotor shaft.

End play:

$0.013 \times 0.096 \mathrm{~mm}(0.0005 \times 0.0038 \mathrm{in})$

TURBINE WHEEL

Check turbine wheel for the following:

- Oil
- Carbon deposits
- Deformed fins
- Contact with turbine housing

COMPRESSOR WHEEL

Check compressor wheel for the following:

- On
- Deformed fins
- Contact with compressor housing

TURBOCHARGERS

Inspection (Cont'd)

wastegate valve

Remove rod pin and check wastegate valve for cracks, detormation and smooth movenent.
Check valve seat surface for smoothness.

WASTEGATE VALVE ACTUATOR

Apply air pressure to wastegate valve actuator and check it for smooth movement.

- Do not keep applying alr pressure to the actuator.
- The air pressure should be in the range of 78 to $88 \mathrm{kPa}(0.78$ to $0.88 \mathrm{bay}, 0.8$ to $0.9 \mathrm{~kg} / \mathrm{cm}^{2}, 11$ to 13 psi).

Removal

1. Remove front part of front fender protector.
2. Remove reservoir tank (left intercooler service only),
3. Remove front combination lamp.
4. Remove bolts fastening intercooler and front inlet cover.
5. Remove inlet and outlet hoses.
6. Remove intercooler unit.

SEME2iC
EM-45

WARNING:

a. Sltuate vehicie on a flat and solid surface.
b. Place chocks af front and back of rear wheels.
c. Do not remove engine untit exhaust system has completely cooled off. Otherwise, you may burn yourself andfor fire may break out in fuel tine.
d. For safety during subsequent steps, the fension of wires should be slackened agalnst the engine.
e. Before tisconnecting luel hose, release tuel pressure from fuel inne.
Refer to "Releasing Fuel Pressure" in section EF \& EC.
f. Be sure to hoist engine and transmission in a safe manner.
g. For engines not equipped with engine slingers, attach proper slingers and bolts described in PARTS CATALOG.

CAUTION:

- When lifting engine, be careful not to strike adjacent parts, especially accelerator wire casing, brake 侮es, and brake master cyllinder.
- In hoisting the engine, always use engine slingers in a safe manner.

M/T model

1. Remove engine under cover and hood.
2. Drain coolant from both cylinder block drain plugs, and radiator drain cock.
3. Drain engine oil from drain plug of oll pan.
4. Remove vacuum hoses, fuel tubes, wires, harnesses and connectors and so on.
5. Remove front exhaust tubes and propeller shaft.

6. Remove radiator.
7. Remove drive belts, cooling fan and coupling.
8. Remove P/S oil pump, alternator, A / C pump from engine, and starter motor, and clutch operaling cylinder.
9. Disconnect A/C tube clamps as shown.

10. Disconnect steering column tower ioint.
11. Remove tension rod fixing bolts from both sides.
12. Loosen transverse link bolts on both sides.
13. Set a suitable transmission jack under suspension member.

- At this time, hoist engine with engine slinger.

14. Remove suspension member fixing bolts.
15. Remove engine mounting bolts from both sides and then slowly lower transmisston jack.

ENGINE REMOVAL

M/T model (Cont'd)
36. Remove engine with transmission as shown.

A/T model

f. Perform the same procedures (1 to 8) as for M / T modet.
2. Remove transmission from vehicle.

Refer to AT section.

3. Hoist engine with engine slingers and remove engine mounting bolts from both sides.

4. Remove engine from vehicle as shown

CYLINDER BLOCK

CAUTION:

- When installing sfiding parts such as bearings and pistons, be sure to apply engine oll on the sliding surfaces.
- Place removed parts such as bearings and bearing caps in thelr proper order and direction.
- When tightening connecting rod bolts and main bearing cap bolts, apply engine oil to thread portion of bolts and seating surface of nuts.

Inspection

PISTON AND PISTON PIN CLEARANCE

- Contirm the fiting of piston pin into piston pin hole by checking if it can be pressed in smoothly by finger pressure at room temperature.

1. Measure inner diameter of piston pin hole " $d p$ ".

Standard diameter "dp":
21.987-21.999 mm (0.8656-0.8661 In)

CYLINDER BLOCK

Inspection (Cont'd)

2. Measure outer diameter of piston pin "Dp".

Standard diameter "Dp":
21.989 ~ $22.001 \mathrm{~mm}(0.8657-0.8662 \mathrm{in})$
3. Calculate piston pin clearance.
$\mathrm{dp}-\mathrm{Dp}=-0.004$ to $0 \mathrm{~mm}(-0.0002$ to 0 in$)$
If it exceeds the above value, replace piston assembly with pin.

PISTON RING SIDE CLEARANCE
 Side clearance:
 Fop ring
 $0.040-0.073 \mathrm{~mm}(0.0016 \cdot 0.0029 \mathrm{in})$
 and ring
 $0.030 \cdot 0.063 \mathrm{~mm}(0.0012-0.0025 \mathrm{in})$

Max. limit of side clearance:
0.1 mm (0.004 in)

If out of specification, replace piston and/or piston ring assembly.


```
PISTON RING END GAP
End gap:
Top ring
\(0.21-0.40 \mathrm{~mm}(0.0083 \cdot 0.0157 \mathrm{in})\)
2nd ring
\(0.50-0.76 \mathrm{~mm}(0.0197-0.0299 \mathrm{in})\)
Oll ring
\(0.20-0.76 \mathrm{~mm}(0.0079 \cdot 0.0299 \mathrm{in})\)
```

Max. limit of end gap:
$1.0 \mathrm{~mm}(0.039 \mathrm{in})$
If out of specification, replace piston ring. If gap still exceeds the limit even with a new ring, rebore cylinder and use oversized piston and piston rings.

Refer to S.D.S.

CONNECTING ROD BEND AND TORSION Bend:

Limit $0.15 \mathrm{~mm}(0.0059 \mathrm{in})$ per $100 \mathrm{~mm}(3.94 \mathrm{in})$ length Torsion:

Limit $0.3 \mathrm{~mm}(0.012 \mathrm{in})$ per $100 \mathrm{~mm}(3.94 \mathrm{in})$ length If it exceeds the limit, replace connecting rod assembly.

CYLINDER BLOCK

Inspection (Cont'd) CYLINDER BLOCK DISTORTION AND WEAR

1. Clean upper face of cylinder block and measure the distortion.

Limit:
0.10 mm (0.0039 in)
2. If out of specification, resurface it.

The resurfacing limit is determined by cylinder head resurfacing in engine.
Amount of cylinder head resurfacing is " A ".
Amount of cylinder block resurfacing is " B ".
The maximum limit is as tollows:
$A+B=0.2 \mathrm{~mm}(0.008 \mathrm{in})$
3. If necessary, replace cylinder block.

PISTON-TO-BORE CLEARANCE

Method A (Using bore gauge and micrometer)

1. Using a bore gauge, measure cylinder bore for wear, out-ot-round and taper.

Standard inner diameler:
$87.000 \cdot 87,030 \mathrm{~mm}(3.4252 \cdot 3.4264 \mathrm{in})$
Wear limit:
$0.20 \mathrm{~mm}(0.0079 \mathrm{in})$
Out-ot-round ($X-Y$) limit:
$0.015 \mathrm{~mm}(0.0006 \mathrm{in})$
Taper (A-B-C) IImit:
$0.010 \mathrm{~mm}(0.0004 \mathrm{in})$
II it exceeds the limit, rebore all cylinders. Replace cylinder block if necessary.
2. Check for scratches and seizure if seizure is found, hone it.

- If bolh cyllnder block and piston are replaced with new ones, select piston of the same grade number punched on cyllinder block upper surface.

CYLINDER BLOCK

Inspection (Cont'd)

3. Measure piston skirt diameter.

Piston diameter "A":
Refer to S.D.S.
Measurtrag point "a" (Distance from the bottom):
$11.5 \mathrm{~mm}(0.453 \mathrm{~m})$
4. Check that piston-to-bore clearance is within specification.

Piston-to-bore clearance "B":
Non-turbo
$0.015-0.035 \mathrm{~mm}(0.0006-0.0014 \mathrm{in})$
Turbo
$0.025 \cdot 0.045 \mathrm{~mm}(0.0010-0.0018 \mathrm{in})$
5. Determine piston oversize according to amount of cyfinder wear.
Oversize pistons are available for service. Refer to S.D.S.
6. Cylinder bore size is determined by adding piston-to-bore clearance to piston diameter "A".

Rebored size calculation:
$\mathbf{D}=\mathbf{A}+\mathbf{B}-\mathbf{C}$
where,
D: Bored diamele:
A: Piston diameter as measured
B: Pistonuto-bore clearance
C: Honing allowance 0.02 mm (0.000a in)
7. Install main bearing caps, and tighten to the specified torque to prevent distortion of cylinder bores in final assembly.
8. Cut cylinder bores.

- When any cylinder needs boring, all other cyinders must also be bored.
- Do nof cut too much out of cylinder bore at a time. Do not cut more than 0.05 mm (0.0020 in) in diameter at a time.

9. Hone cylinders to obtain specified piston-to-bore clearance.
10. Measure finished cylinder bore for owt-ot-round and taper.

- Measurement should be done after cylinder bore cools down.

CRANKSHAFT

1. Check crankshaft main and pin journals tor score, wear on cracks.
2. With a micrometer, measure journals for taper and out-of-round.

Out-of-round $(X-Y)$:
Less than $0.005 \mathrm{~mm}(0.0002 \mathrm{in})$
Taper (A-s):
Less than $0.005 \mathrm{~mm}(0.0002 \mathrm{in})$

Inspection (Cont'd)

3. Measure crankshaft runout.

Runout (Total indicator reading):
Less than 0.10 mm (0.0039 in)

BEARING CLEARANCE

- Either of the following two methods may be used; however, method " A " gives more reliable results and is preferable.
Method A (Using bore gauge \& micrometer)
Main bearing

1. Set main bearings in their proper positions on cylinder block and main bearing cap.
2. Install main bearing cap to cylinder block.

Tighten all bolts in correct order in two or three stages.
3. Measure inner diameter " A " of each main bearing.
4. Measure outer diameter "Dm" of each crankshatt main joumal.
5. Calculate main bearing clearance.

Main bearlng clearance $(\mathrm{A}-\mathrm{Dm})$:
Standard
$0.028=0.055 \mathrm{~mm}(0.0011-0.0022 \mathrm{in})$
Limit
$0.090 \mathrm{~mm}(0.0035 \mathrm{in})$
6. If it exceeds the limit, replace bearing.
7. If clearance cannot be adjusted within the standard of any bearing, grind crankshaft journal and use undersized bearing.

Inspection (Cont'd)

a. When grinding crankshaft joumal, confirm that "L" dimension in fillet roll is more than the specified limit.
"L": 0.1 mm (0.004 in)
b. Reter to S.D.S. for grinding crankshaft and available service parts.
8. H crankshatt, cylinder block or main bearing is reused again, measure main bearing clearance.
If crankshaft, cylinder block and main bearings are replaced with new ones, it is necessary to select thickness of main bearings as follows:
a. Grade number of each cylinder block main journal is punched on the respective cylinder block.
b. Grade number of each crankshaft main journa! is punched on the No. 1 counter weight of crankshaft.
c. Select main bearing with suitable thickness according to the following table.

Main bearing grade number:

	Main journal grade number	0	1
Crankshaft journal grade number		2	
0	0	1	2
$1(0)$	1	2	3
$2(1)$	2	3	4

[^6]

Inspection (Cont'd)

Connecting rod bearing (Big end)

1. install connecting rod bearing to connecting rod and cap.
2. Install connecting rod cap to connecting rod.

Tighten bolts to the specified torque.
3. Measure inner diameter " C " of each bearing.
4. Measure outer diameter " Dp " of each crankshaft pin journal.
5. Calculate connecting rod bearing clearance.

Connecting rod bearing clearance (C - Dp): Standard $0.028 \cdot 0.048 \mathrm{~mm}(0.0011-0.0019 \mathrm{in})$
Limit
$0.090 \mathrm{~mm}(0.0035 \mathrm{in})$
6. If it exceeds the limit, replace bearing.
7. It clearance cannot be adjusted within the standard of any bearing, grind crankshaft journal and use undersized bearing.
Reter to step 7 of "BEARING CLEARANCE - Main bearing".
8. If crankshaft, connecting rods or bearings are replaced with new ones, it is necessary to select thickness of connecting rod bearings as follows:
a. Grade number of each connecting rod big end is punched on the respective connecting rod.
b. Grade number of each crankshatt pin journal is punched on the No. 5 counter weight of crankshaft.

CYLINDER BLOCK

Inspection (Cont'd)

c. Select connecting rod bearing with suitable thickness according to the following table.
Connecting rod bearing grade number:

	0	1 (1)
0	0	1
1 (1)	1	2
2 (1)	2	3

For example:
Connecting rod big end grade number: 1
Crankshaft pin grade number: 2
Connecting rod bearing grade number $=1+2$

$$
=3
$$

Method B (Using "plastigage")

CAUTION:

- Do not turn crankshaft or connecting rod while plastigage is being inserted.
- When bearing clearance exceeds the spectited limit, ensure that the proper bearing has been installed. Then If excessive bearing clearance exists, use a thicker main bearing or undersized bearing so that the specified bearing clearance is obtained.

CONNECTING ROD BUSHING CLEARANCE (Small end)

1. Measure inner diameter " C " of bushing.

2. Measure outer diameter "Dp" of piston pin.
3. Calculate connecting rod bushing clearance.
$C-D p=0.005-0.017 \mathrm{~mm}(0.0002-0.0007 \mathrm{ln})$
Limit: $0.023 \mathrm{~mm}(0.0009 \mathrm{in})$
If it exceeds the specitied value, replace connecting rod bushing and/or piston set with pin.

Inspection (Cont'd)

REPLACEMENT OF CONNECTING ROD BUSHING (Smali end)

1. Drive in small end bushing until it is flush with end surface of rod.
Be sure to align the oil holes.
2. After driving in small end bushing, ream the bushing.

Small end bushing inside diameter:
Finished size
$22.000-22.012 \mathrm{~mm}(0.8661-0.8666 \mathrm{in})$

FLYWHEELIDRIVE PLATE RUNOUT

Runout (Total indicator reading):
Flywheel (MIT motiel)
Less than $0.15 \mathrm{~mm}(0.0059 \mathrm{in})$
Drive plate (A/T model)
Less than 0.15 mm (0.0059 in)

Assembly PISTON

1. Install new snap ring on one side of piston pin hole.
2. Heat piston to 60 to $70^{\circ} \mathrm{C}$ (140 to $158^{\circ} \mathrm{F}$) and assemble piston, piston pin. connecting rod and new snap ring.

- Align the direction of piston and connecting rod.
- Numbers stamped on connecting rod and cap correspond to each cylinder.
- After assembly, make sure comnecting rod swings smoothly.

Assembly (Cont'd)

3. Set piston rings as shown.

CRANKSHAFT

1. Set main bearings in their proper positions on cylinder block and main bearing cap.

- Conflim that correct main bearings are used.

Refer to "Inspection".
2. Install crankshaft and main bearing caps and tighten bolts to the specified torque.

- Prior to tightening bearing cap bolts, place bearing cap in its proper position by shitting crankshaft in the axial direction.
- Tighten bearing cap bolta graduaily in two ar three stages. Start with center bearing and move outward sequentially.
- After securing bearing cap bolts, make sure crankshaft turns smoothly by hand.

3. Measure crankshaft end play,

Crankshan end play:
Standard
$0.05 \cdot 0.18 \mathrm{~mm}(0.0020 \cdot 0.0071 \mathrm{in})$
Limit
$0.30 \mathrm{~mm}(0.0118 \mathrm{in})$
If beyond the limit, replace bearing with a new one.

CYLINDER BLOCK

Assembly (Cont'd)

4. Install connecting rod bearings in connecting rods and connecting rod caps.

- Conirm that correct bearings are used.

Refer to "Inspection".

- mstall bearings so that oil hole in connecting rod aigns with oll hole of bearing.

6. Measure connecting rod side clearance.

Connecting rod side clearance:

Standard
$0.20 \cdot 0.35 \mathrm{~mm}(0.0079 \cdot 0.0138 \mathrm{in})$
L.imit
$0.40 \mathrm{~mm}(0.0157 \mathrm{in})$
If beyond the limit, replace connecting rod and/or crankshaft.

REPLACING PILOT BUSHING

1. Remove pilot bushing (M/T)/pilot converter (A/T).

Assembly (Cont'd)

2. Install pilot bushing (M/T)/pitot converter (A/T).

General Specifications

Cylinder arrangement	V-b
Displacement Con' (cus in)	2,960 (780.62)
Bore asd stroke $\mathrm{mm} / \mathrm{im})$	$87 \times 83(3.43 \times 3.27)$
Vatve arrangement	D.O.H.C.
Firing order	1-2-3-4-5-6
Number of piston rings	
Compressiot	2
Oil	1
Number of main bearings	4
Compresston ratio (Nonfurooflerbo)	10.5/8.5

COMPRESSION PRESSURE

Compression pressute

Standard

Qifferential limit betweert cylinders

1,205 (12.06, 13.1, 186)
$981(9.81,19.0 .142)$
$92(0.38,1.0,14)$

Cylinder nember

SEMT 13A

CYLINDER HEAD		
		Unat man ant $^{\text {a }}$
	Slandard	Limit
Head surface distortion	$\begin{aligned} & \text { Less than } \\ & 0.05\{0.0020\} \end{aligned}$	0.1 (0.004)

Valve head diameter "D"	
inlake	34.0-34,2 (1.339-1.346)
Exhaust	29.5-28.7 (1.161-1.169\}
Vatue tength "L"	
inteke	$103.1-103.3(4.059-4.067)$
Exhaust	103.6-103.8(4.079-4.087)
Valve stem diameter "d"	
Intake	$5.985 \cdot 5.980(0.2348-0.2354)$
Exhayst	5.945 - $5.960(0.2341-0.2346)$
Valve seat angle ";	
Intake	4***5'-4**
Exhatigi	
Valve margis ' 7 ''	
fotake	1.15-4.45 (0.0453-0.0571)
Exhaust	1.35- 5.65 (0.0531-0.0650)
Valve margin ' $\mathrm{T}^{\prime \prime}$ matat	More 紜枵 0.5 (0.020)
Valwe stem end surfate grifoling fimit	Less than 0.2 (0.008)
Valve clemance	
Intake	0 (0)
Exhaus1	0 (0)

Vaive spring

Fres height	men $(\mathrm{in}\}$	$43.1(1.697)$

Hyciraulic valve lifter
Unit: man (ia)

Lifter outer diameter	$\begin{gathered} 30.355-30.565 \\ 11.2184+1.21911 \end{gathered}$
Lither guide immer diameter	$\begin{gathered} 31.000-31.020 \\ (1.2205-1.2213) \end{gathered}$
Clearance between liter and iliter guide	$\begin{gathered} 0.035-0.065 \\ (0.0014 \times 0.0026) \end{gathered}$

Vaive guide

Unit: mon (in)

	Stancare	Service
Valve guide Otter diameler	$\begin{gathered} 10.023-10.03 .4 \\ (0.3946-0.35060) \end{gathered}$	$\begin{gathered} 10.223+10.234 \\ (0.4025-0.4029) \end{gathered}$
Valve wide trner diamozer (F inished size)	$\begin{gathered} 6.0000 \cdot 6.076 \\ \{0.2362-0.2369\} \end{gathered}$	
Cylinder heme valve guide hole diameter	$\begin{gathered} 9.975-9.986 \\ \{0.3947-0.3935\} \end{gathered}$	$\begin{gathered} 10.175-10.996 \\ 10.4606 \cdot 0.4014\} \end{gathered}$
Interference fit of value guide	$\begin{gathered} 0.027 \cdot 0.059 \\ (0.0011-0.0023) \end{gathered}$	
	Standard	Max. tolerante
Slam to quide chazrance		$\begin{gathered} 0.10 \\ (0.0039) \end{gathered}$
intake	$\begin{gathered} 0.020-0.053 \\ (0.0008-0.0021) \end{gathered}$	
Exhaust	$\begin{gathered} 0.040-0.073 \\ (0.0016-0.0079) \end{gathered}$	
Valye deffection limit	\cdots	$\begin{gathered} 0.20 \\ (0.0079) \end{gathered}$

Latit mot

		Slandard	Service*
Cytinder head teal recess diameter (D)	In.	$36.000-36.016(5.4173-1.4179)$	$36.500-36.516$ [$1.4370-1.4576\}$
	Ex.	$31.500 \cdot 31.316(5.2402 \cdot 1.2408)$	$32.000-32.016$ (1.2598-1.2605)
	1 n .	$0.081-0.113$ \{0.0032-0.0044\}	
Vave sear mierteremed	Ex.	0.054-0.096 $(0.0025-0.0038)$	
Valve seat outer diameter (D.)	Int.	36.007-36.713 (1.4211-1.4238)	36.597-36.613(1.4408-1.4415)
	Ex.	31.580- 31.506 (1.2433-1.2438)	$32.080-32.095(1.2630-1.2636)$
	\|ri.	29.85-30.15 (1.1752-1.1570)	
Vaive seat nner diameter $\mathrm{id}_{\text {q/ }}$	Ex.	24.35-24.65 (0.9587 - 0.9705)	
*eleght (H)	th.	5.9-6.0 $0.232-0.236\}$	5.35-5.45 (0.2106-0.2148)
	Ex.	$5.0 \times 6.0(0.232 \times 0.236)$	5.9-0.0 (0.232-0.236
Face angle (9)	In.	45^{*}	
	Ex.	45^{*}	
Face inner diameter (D_{4})	An.	$31.5(1.240)$	* Valve seat surface must be corrected to specified vatue.
Face outer diameter $\left\{\mathrm{D}_{3}\right\}$	for.	39.6-33.8(1.323-1.331)	
	Ex.	$28.9+20.7(1.138+1.746)$	

PISTON, PISTON RING AND PISTON PIN

Available piston

Unit: mm (in)	
	SEME91B
Piston skift diameter ' A^{\prime} '	
Stamdard	
Grade No. 1	86.975-36.985 (3.4242-3.4248)
Grade No. 2	86.985-34.995 (3.4246-3.4250)
Grade No. 3	$86.985 \cdot 87.005(3.4250 \cdot 3.4254)$
0.25 (0.0098) ©versize (Servite)	87.225-87.275 (3.4340-3.4360)
0.50 (0.6197) over. síze (Service)	87.475-87.525 (3.44.39-3.4459)
'a' dimertion	\$1.50.453)
Piston pin hole diameter	21.987-21.999 (0.8056-0.8851)
Piston clearance to cytim* def bleck	
Nor-jurbo	0.015-0.035 $30.0006-0.0014)$
Turbo	0.025-0.045 (0.0010 - 0.0018)

Piston ring

Piston pin

	Whit: frm (in)
Piston pin outer diameter	21.989-22.001 $10.8657-0.8662$)
interference tit of piston pin to piston	$0-0.004(0-0.0002)$
Piston pin to confecting rod bushing ciearance	$0.005-0.077(0.00002-0.0007)$

CONNECTING ROD

Linit mrf (in)

Center distarce	154.1-754.2 (8.067-6.071)
Eend [per $100(3.94)]$ Limit	0.15 (0.0059)
Forsion [per 100 (3.94)] l.eitmet	0.3 (0.032)
Piston pin bushing inner diamererer	22.000-22.012 (0.8631-0.8866)
Eonnecting rod big end knner diametar	53.000 - $53.013(2.0866-2.0871)$
Side clearance	
Standard	0.20-0.35 (0.0079-0.013 ${ }^{\text {a }}$)
Limit	$0.40(0.0157)$

SERVICE DATA AND SPECIFICATIONS (S.D.S.)

Inspection and Adjustment (Cont'd)

CAMSHAFT AND CAMSHAFT BEARING

SEM569M

	Startard	Max. tolerance
Camshat journal to beating clearance	$\begin{gathered} 0.045-0.086 \\ (0.0018-0.0034) \end{gathered}$	0.15 (0.0056)
Inner diameter of camshatt bearing	$\begin{aligned} & 28.000-28.021 \\ & \{1.1024-1.1032\} \end{aligned}$	\cdots
Otier diameter of camshafi joumai	$\begin{gathered} 27.935-27.955 \\ (1.0598-1.1005) \end{gathered}$	-
Camsnatt ninout $[\text { [.R.] }]^{+}$	tass thas 0.04 (0.0016)	0.1 (0.004)
Camshaft end play	$\begin{gathered} 0.03-0.08 \\ (0.0012-0.0031) \end{gathered}$	-

Cam neight "A"	
Intake	$40.405-40.595(1.5907-1.5982)$
Exhaust	
Wear timit od cam neight	0.15 (0. 6059$)$

Thola indacator readinag

CYLINDER BLOCK

Inspection and Adjustment (Cont'd) CRANKSHAFT

SEMBE1A

Surface tiatness	
Standaral	Eegs than $0.03(0.0012)$
Limit	$0.10(0.0039)$

Cyinder bore
inner diameter
Standard
Grade No. $1 \quad 87.000-87.010(3.4252-3.4256)$
Grade No. $2 \quad 87.050-87.020(3.4256-3.4280)$
Grade No. $3 \quad 87.020-87.030(3.4260-3.4264)$
Wear limit 0.20 (0.0079)

Outrofround ($\mathbf{X} \cdots \mathbf{Y}$)	Less than 0.015 (0.0006)
Taper $(A-B-C)$	Less Ihan 0.010 [0.0004)

Mair journa mener di. amelet

Grade No. 0	$66.645-66.654(2.6838-2.6242)$
Grade Ho. 1	$66.654-66.663(2.6342-2.60 .45)$
Grade No. 2	$66.683-66.672(3.6244-2.6849)$

Difference in ipter diameter beiween cylirders	
Standard	Less that 0.05 (0.6020)

available main bearing

No. 4
Lower mpin beariag
(Without of groove)

SEMBZ7A

No. 1 maln bearing

Girade number	$\begin{gathered} \text { Thickness ' } \mathrm{T} \text { ' } \\ \text { गmrn (in) } \end{gathered}$	Wedth "W" motion (in)	Identification calor
0	$\begin{gathered} 1.817 \cdot 5.821 \\ (0.0715-0.0717) \end{gathered}$		Black
\$	$\begin{gathered} 1.821-1.885 \\ (0.0717-0.0799) \end{gathered}$		Erown
2	$\begin{gathered} 1.825-1.829 \\ (0.0719-0.0720) \end{gathered}$	$\begin{gathered} 22.4-22.8 \\ (0.882-0.890) \end{gathered}$	Greer:
3	$\begin{gathered} 1.629-1.833 \\ (0.0720-0.0722) \end{gathered}$		Yeltow
4	$\begin{gathered} 1.833-1.837 \\ (0.0722-0.0723) \end{gathered}$		8 8ue

No. 2 and 3 main bearing

Grade number	靬icknesg " \mathbf{T} " min (in)	Widith "W" mm (in)	1dentiticaton color
0	$\begin{gathered} 1.517-1.821 \\ (0.0715-0.0717) \end{gathered}$		Eatack
;	$\begin{gathered} 1.821-1.825 \\ (0.0717-0.0719) \end{gathered}$		Brown
2	$\begin{gathered} 1.825-+.829 \\ (0.0719-0.0720) \end{gathered}$	$\begin{gathered} 18.9-19.1 \\ (0.744-0.752) \end{gathered}$	Green
3	$\begin{gathered} 1.629-0.833 \\ (0.0720-0.0722) \end{gathered}$		Yehtow
4	$\begin{gathered} 1.833-1.837 \\ (0.0722-0.0723) \end{gathered}$		Slue

No. 4 main bearing

Grade number	Thickness "T" mm (in)	demtificalion color
0	$\begin{gathered} 5.817-\uparrow .824 \\ 9.6715-0.0717 \end{gathered}$	Elack
1	$\begin{gathered} 1.821-1.825 \\ (0.0757-0.0719) \end{gathered}$	Brown
2	$\begin{gathered} 1.825 \cdot 1.829 \\ (0.07 \% 9-0.0720) \end{gathered}$	Green
3	$\begin{gathered} 1.829-1.833 \\ (0.0720-0.0722) \end{gathered}$	Yellow
4	$\begin{gathered} 1.833-3.837 \\ (0.0722-0.07237 \end{gathered}$	Elue

Undersize
Unit: matin

	Thitkness	Main Jouras diameter " 0 mm
$\begin{gathered} 0.25 \\ (0.0959) \end{gathered}$	$\begin{gathered} 1.948-1.956 \\ (0.0767-0.0770) \end{gathered}$	Grind so that bearimy clearance is the specttied value.

AVAILABLE CONNECTING ROD BEARING Connecting rod bearing

Grade mumber	rinleknest ${ }^{-1}$ mem (in)	dentification color
0	$\begin{gathered} 1.496-1.4909 \\ (0.0589-0.0590) \end{gathered}$	No paint
1	$\begin{gathered} 1.499-1.592 \\ \{0.0590-0.0591\} \end{gathered}$	Brown
2	$\begin{gathered} 1.502-1.505 \\ (0.0591-0.0593) \end{gathered}$	Green
3	$\begin{gathered} 1.505 \cdot 1.508 \\ (0.0593-0.0596) \end{gathered}$	Yelfow

Undersize
Lnat: mm $\{\mathrm{in}$)

	Thickness	Crank pir jounnal oam. eter ' $D p$ "
$\begin{gathered} 0.08 \\ (0.0039) \end{gathered}$	$\begin{gathered} 1.540-1.548 \\ (0.0606-0.069) \end{gathered}$	Grind so lhat bearing flearence is the specified valua.
$\begin{gathered} 0.12 \\ (0.0047) \end{gathered}$	$\begin{gathered} 1.560-1.568 \\ (0.0614-0.06: 7) \end{gathered}$	
0.25	$1.6225-1.633$	
(0.0098)	(0.0640-0.6643)	

Inspection and Adjustment (Cont'd)

TURBOCHARGER

	Unit: mpa (in)
Hotot shaf	
Rungut [T.1.A.]	$0.056-0.127(0.0022-0.0050)$
End pitay	$0.013-0.090(0.0005-0.0038)$

Total inchator teading

MISCELLANEOUS COMPONENTS

Unat: mmen

Fiywhee:	
Runout [T.I.R.] ${ }^{+}$	Less than 0.18 (0.0059)

Bearing clearance

	Unil: man (it)
Main beating clearance	
Standard	0.028-0.055 $60.0071-0.0022)$
Limit	0.090 (0.0035)
Connectinty rod bearing charance	
Stancard	0.028-0.048 (0.0011-0.0019)
Limm	0.090 (0.0035)

ENGINE LUBRICATION \&

 COOLING SYSTEMS

SRATION

CONTENTS

PREPARATION $0-2$ -
PRECAUTION
PRECAUTION
ENGINE LUBRICATION SYSTEM 3-4
ENGINE COOLING SYSTEN. 人
SERVICE DATA AND SPECIFICATIONS (S.D.S.) C-E

PREPARATION

SPECIAL SERVICE TOOLS

Tool number Tool name	Description	
ST25051001 Oll pressure gauge		
ST25052000 Hose	Adapting oil pressure gauge to cylinder block	
WS39930000 Tube presser	Pressing the tibe of liquid gasket	
EG17650301 Radiator cap tester adapter	Adapting radiator cap tester to radiator filler neck	

LIQUID GASKET APPLICATION PROCEDURE

a. Betore applying liquid gasket, use a scraper to remove all traces of old liquid gasket from mating surface.
b. Apply a continuous bead of liquid gasket to mating surfaces. (Use Genuine Liquid Gasket or equivalent.)

- Be sure liquid gasket is 3.5 to 4.5 mm (0.138 to 0.177 in) wide (for oil pan).
- Be sure liquid gasket is 2.0 to $\mathbf{3 . 0} \mathbf{~ m m ~ (0 . 0 7 9 ~ t o ~} 0.118 \mathrm{in})$ wide (in areas except oil pan).
c. Apply liquid gasket to inner sealing surface around hole perimeter area.
(Assembly should be done within 5 minutes after coating.)

Lubrication Circuit

Oil Pressure Check

WARNING:

- Be careful not to bum yourself, as the engine and oll may be hol.
- Oil pressure check should be done in "Neutral" gear position.

1. Check oil level.
2. Remove oil pressure switch.
3. Install pressure gauge.
4. Start engine and warm it up to normal operating temperature.
5. Check oil pressure with engine running under no-load.

Engine rpm	Approximate discharge pressure k $\rho a($ bar, kg/cm
Idle speed	
3,000	More than $78(0.78,0.8,11)$

If difference is extreme, check oil passage and oil pump for oil leaks.
6. Install oil pressure switch with sealant.

Oil Pump

REmoval

1. Drain oil.
2. Remove oil pan. (Refer to "OIL PAN - Removal" in EM section.)
3. Remove oil pump assembly.

Oil Pump (Cont'd)

 dISASSEMBLY AND ASSEMBLY

- Always replace with new oil seal and gasket.
- When installing oil pump, apply engine oil to inner and outer gears.
- Be sure that O-ring is properly installed.

INSPECTION

Using a feeler gauge, check the following ciearances:

Standard clearance:

Unit: mm (in)

Body to outer gear clearance (7)	$0.110-0.200(0.0043-0.0079)$
frner gear to crescent clearance (2)	$0.223-0.333(0.0088-0.0131)$
Outer gear to crescent clearance (3)	$0.210-0.320(0.0083-0.0726)$
Housing to infer gear clearance (4)	$0.050-0.000(0.0020-0.0035)$
Housing to outer gear clearance (s)	$0.050-0.710(0.0020-0.0043)$

H any clearance exceeds the limit, replace gear set or entire oil pump assembly.

Oil Pump (Cont'd)

OIL PRESSURE RELIEF VALVE INSPECTION

Inspect oil pressure relief valve for movement, cracks and breaks by pushing the ball. If replacement is necessary, remove valve by prying it out with a suitable tool. install a new valve by tapping it in place.

Cooling Circuit

System Check

WARNING:
Never remove the radiator cap when the engine is hot; serious burns could be caused by high pressure fluid escaping from the radiator.
Wrap a thick cloth around the cap and caretully remove by turning it a quarter turn to allow built-up pressure to escape. Then continue to turn the cap until it can be removed salely.

CHECKING COOLING SYSTEM HOSES

Check hoses for improper attachment, leaks, cracks, damage, loose connections, chafing and deterioration.

CHECKING COOLING SYSTEM FOR LEAKS

To check for leakage, apply pressure to the cooling system with a tester.

Testing pressure: $98 \mathrm{kPa}\left(0.98 \mathrm{bar}, 1.0 \mathrm{~kg} / \mathrm{cm}^{2}, 14 \mathrm{psi}\right)$

CAUTION:

Higher than the specifled pressure may cause radiator damage.

CHECKING RADIATOR CAP

To check radiator cap, apply pressure to cap with a tester.
Radiator cap reliet pressure:
$78-98 \mathrm{kPa}$ ($0.78-0.98 \mathrm{bar}, 0.8-1.0 \mathrm{~kg} / \mathrm{cm}^{2}$, \$1-14 psi)

Water Pump

REMOVAL AND INSTALLATION

1. Drain coolant from drain cocks on both sides of cylinder block and radiator.
2. Remove the following parts:

- Under cover
- Radiator
- Drive belts
- Cooling tan and coupling
- Water iniet and outlet

ENGINE COOLING SYSTEM

Water Pump (Cont'd)

- Crank pulley
- Timing belt cover

3. Remove water pump.
4. After repairing or replacing water pump, install any parts removed in reverse order of removal.

CAUTION:

- When removing water pump assembly, be careful nol to get coolant on timing bell.
- Water pump cannot be disassembled and should be replaced as a unit.
- After installing water pump, connect hose and clamp securely, then check for leaks using radiator cap fester.

INSPECTION

1. Check for badly rusted or corroded vanes and body assembly.
2. Check for rough operation due to excessive end play.

Thermostat

REMOVAL AND INSTALLATION

1. Drain coolant trom drain cocks on both sides of cylinder block and radiator.
2. Remove the following parts:

- Under cover
- Radiator upper hose
- Radiator shroud
- Fan belt
- Cooling fan and coupling
- Water inlet

3. Remove thermostat.

4. After repairing of replacing thermostat, install thermostat with jiggle valve facing upward.

ENGINE COOLING SYSTEM

Thermostat (Cont'd)

INSPECTION

1. Check valve seating condition at ordinary room temperatures. It should seat tightly.

2. Check valve opening temperature and maximum valve lift.

		Standard
Valve opening temperature	${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	$76.5(170)$
Maximam valve lft	$\mathrm{mm} 7^{\circ} \mathrm{C}\left(\mathrm{in} /{ }^{\circ} \mathrm{F}\right)$	$10 / 90(0.39 / 194)$

3. Then check if valve is $5^{\circ} \mathrm{C}\left(9^{\circ} \mathrm{F}\right)$ below valve opening temperature.

- After installation, run engine for a few minutes, and check for leaks.
- Be careful not to spill coolant over engine compartment. Use a rag to absorb coolant.

ENGINE COOLING SYSTEM

Radiator

REMOVAL AND INSTALLATION

1. Drain coolant from radiator drain cock.
2. Remove under cover.
3. Disconnect radiator upper and lower hoses.
4. Remove A/T oil cooler hoses. (A/T model only)
5. Remove radiator lower shroud.
6. Remove radiator.
7. After repairing or replacing radiator, install any part removed in reverse order of removal.

Electric Cooling Fan Control System

Radiator (Condenser) tan is controlled by E.C.C.S. control unit. For details, refer to EF \& EC section.

Cooling Fan

DISASSEMBLY AND ASSEMBLY

INSPECTION

Check fan coupling for rough operation, oil leakage or bent bimetal.

Engine Lubrication System

Oll pressure check

Engine ram	Approximate discharge
Ide speed	More than 78 (0.78, $0.8,1$)
3,000	$353-45\}\{3.53-4.51,3.6-4.6,51-65\}$

Oil pump

	Lnit: mm (in)
Body to outer gear clearance (7)	0.170-0.200 $0.0043-0.0070)$
maer geas to crescent clearance (2)	0.223-0.333 (0.0088-0.0131)
Outer geaf to crescent clearance (3)	0.240-0.320 (0.0083-0.0126)
Holssing to fner gear side clearance (4)	$0.050-0.090(0.0020-0.0035)$
Housing to outer gear side cleazance (3)	0.050-0.110 (0.0020-0.0043)

Engine Cooling System

Thermostat

	Standard
Vaive opening temperature ${ }^{\circ} \mathrm{C}(\mathrm{~F})$	76.5 (170)
Maximum valve lift $\pi \neq m /^{\circ} \mathrm{C}\left(\mathrm{in} J^{\circ} \mathrm{F}\right)$	$10 / 90$ (0.39/194)

ENGINE FUEL \& EMISSION CONTROL SYSTEM

SECTION EF

 EC
CONTENTS

PREPARATION EF \& EC- 2
PRECAUTIONS EF \& EC 3
ENGINE AND EMISSION CONTROL OVERALL SYSTEM EF \& EC- 4
ENGINE AND EMISSION CONTROL PARTS DESCRIPTION EF \& EC- 14
ENGINE AND EMISSION CONTROL SYSTEM DESCRIPTION EF \& EC- 21
IDLE SPEED/IGNITION TIMING/IDLE MIXTURE RATO INSPECTION EF \& EC- 37
TROUBLE DIAGNOSES EF \& EC- 42
FUEL INJECTION CONTROL SYSTEM INSPECTION Ef \& EC-185
EVAPORATIVE EMISSION CONTROL SYSTEM EF \& EC-187
CRANKCASE EMISSION CONTROL SYSTEM EF \& EC-189
SERVICE DATA AND SPECIFICATIONS (S.D.S.) EF \& EC-190
For assistance with wiring diagrams:- Read Gl section, "HOW TO READ WIRING DIAGRAMS".- See EL section, "POWER SUPPIV ROUTING" for power distribution circuit.When you perform trouble diagnoses, read Gl section, "HOW TO FOLLOW FLOW CHARTIN TROUBLE DIAGNOSES".

PREPARATION

SPECIAL SERVICE TOOLS

Tool number Toot name	Description	
(1) KV10900010 fgnition timing adapter coli (2) KV10114200 Adapter harness		Measuring ignition timing
KV10114400 Exhaust gas sensof wrench		Loosening or tightening exhaust gas sensor

PRECAUTIONS

BATTERY

- Always use a $\mathfrak{i 2}$ voll battery as power source.
- Do not attermpt to disconnect battery cables white ergine is running.

E.C.U.

- Do not tisassemble E.C.C.S. control unit \{E.C.U.)
- Do not turn diagnosis mode selector forcibly.
- If a battery terminal is disconnected the memory will zeturn to the ROM value The E.C.C.S. will now statt to selt-control at its intial value. Engine operation can vary slightly when the terminal is disconnected. However, this is not an indication of a probletr. Do not replace parts because of a slight variation.

INJECTOR

- Do not disconnect injector tharness connectors with engine running.
- Do not apply battery power directily to injectors

WIRELESS EOUIPMENT

- Wher instating G.B. hant radio or a mobile phons. be surf to observe the following as it may adversely affect electronic control systems depending on its installation loctation.

1) Keep the arftenna as far as possible from the electronic tontrol units.
2) Keep the antenna feeder tine more than $20 \mathrm{~cm}(7.9 \mathrm{in}$) away from the harness of electronic controls Do not let them run parallel for a long distance.
3) Adjusi the antenna and feeder line so that the standing-wave ratio can be kept smal解
4) Be sure to ground the radio to vehicle bedy.

E.C.C.S. PARTS HANDEBHG

- Handle air flow meter carefully to avoid clamage.
- Do not disassemble air thow meter
- Do not cigan air tion meter with any type of detergent.
- Do nol sisassertble auxillary air controa valve.
- Even a sigght leak in the air intake system can cause serious problems
- Do not shock or jar the crank angle sensor

WHEN STARTING

- Do not depress accelerator pecal when starting.
- Immediately after starting, do not rev up engine unnecessarily.
- Do rot rev up engife just priof to shatdown.

FUEL PGMP

- Do not operate fuel pump when there is no fued in lines
- Tighten fuel hose clamps to the specified torque.

E.C.C.S. MARNESS HANDLENG

- Securaly connect E.C.C. narness connectors.
A poor connection can cause an extremely hight (surge) voltage to develop in coil and condenser, thus resulting in damage to lCs
- Keep E.C.C.S. harness at teast 10 cm (3.9 in) aw wy frofl adjacent harnestses. to prevent an E.C.C.S. systern maltunction due to receiving external noise, decpraded operation of 1Cs, etc.
- Keep E.C.C.S. parts and hamesses dry.
- Before removing parts, fum off zenition switch and then disconnect battery ground cable

E.C.C.S. Component Parts Location

NON-TURBO MODEL

SEF96F
EF \& EC-4

E.C.C.S. Component Parts Location (Cont'd)

TURBO MODEL

SEFT94,

E.C.C.S. Component Parts Location (Cont'd)

TURBO MODEL

SEF447K

System Diagram

TURBO MODEL

System Diagram (Cont'd)

SEFA4EK

System Chart

EF \& EC-10

Vacuum Hose Drawing

NON-TURBO MODEL

Circuit Diagram

E.C.C.S. Control Unit (E.C.U.)

The E.C.U. consists of a microcomputer, an inspection lamp, a diagnostic mode selector, and connectors for signal input and output and for power supply. The unit controls the engine.

Crank Angle Sensor

The crank angle sensor is a basic component of the E.C.C.S. It monitors engine speed and piston position, and sends signals to the E.C.U. to control fuel injection, ignition timing and other functions.
The crank angle sensor has a rotor plate and a wave-forming circuit. The rotor plate has 360 slits for 1° signal and 6 slits for 120° signal. Light Emitting Diodes (L.E.D.) and photo diodes are built in the wave-forming circuit.

When the rotor plate passes between the L.E.D. and the photo diode, the slits in the rotor plate continually cut the light being transmitted to the photo diode from the L.E.D. This generates rough-shaped pulses which are converted into on-off pulses by the wave-forming circuit, which are sent to the E.C.U.

Air Flow Meter

The air flow meter measures the intake air flow rate by measuring a part of the entire flow. Measurements are made in such a way that the E.C.U. receives electrical output signals varied by the amount of heat emitting from the hot film placed in the stream of the intake air.
When intake air flows into the intake manifold through a route around the hot film, the heat generated from the hot film is taken away by the air. The amount of heat reduction depends on the air flow. The temperature of the hot f fim is automatically controlled to a certain number of degrees.
Therefore, it is necessary to supply the hot film with more electric current in order to maintain the temperature of the hot film. The E.C.U. detects the air flow by means of this current change.

Engine Temperature Sensor

The engine temperature sensor, located on the top of water inlet housing, detects engine coolant temperature and transmits a signal to the E.C.U.
The temperature sensing unit employs a thermistor which is sensitive to the change in temperature. Electrical resistance of the thermistor decreases in response to the temperature rise.

Throttle Sensor \& Soft/Hard Idle Switch

The throttle sensor responds to accelerator pedal movement. This sensor is a kind of potentiometer which transforms the throttle valve position into output voltage, and emits the voltage signal to the E.C.U. In addition, the sensor detects the opening and closing speed of the throttle valve and feeds the voltage signal to the E.C.U.
Idle position of the throttle valve is determined by the E.C.U. receiving the signal from the throttle sensor. This system is called "soft idle switch". It controls engine operation such as fuel cut. On the other hand, "hard idle switch", which is built in the throttle sensor unit, is used for engine control when soft idle switch is malfunctioning.

Fuel Injector

The fuel injector is a small, elaborate solenoid valve. As the E.C.U. sends injection signals to the injector, the coil in the injector pulls the needle valve back and fuel is released into the intake manifold through the nozzle. The injected fuel is controlled by the E.C.U. in terms of injection pulse duration.

Pressure Regulator

The pressure regulator maintains the fuel pressure at 299.1 kPa (2.991 bar, $3.05 \mathrm{~kg} / \mathrm{cm}^{2}, 43.4 \mathrm{psi}$). Since the injected fuel amount depends on injection pulse duration, it is necessary to maintain the pressure at the above value.

Exhaust Gas Sensor

The exhaust gas sensor, which is placed into the exhaust outlet, monitors the amount of oxygen in the exhaust gas.
The sensor has a closed-end tube made of ceramic zirconia. The outer surface of the tube is exposed to exhaust gas, and the imer surface to atmosphere. The zirconia of the tube compares the oxygen density of exhaust gas with that of atmosphere, and generates electricity. In order to improve generating power of the zirconia, its tube is coated with platinum. The voltage is approximately VV in a richer condition of the mixture ratio than the ideal air-fuel ratio, white approximately $0 V$ in leaner conditions. The radical change from 1 V to 0 V occurs at around the ideal mixture ratio. In this way, the exhaust gas sensor detects the amount of oxygen in the exhaust gas and sends the signal of approximately 1 V or OV to the E.C.U. A heater is used to activate the sensor.

Fuel Pump

The fuel pump is an in-tank type with a fuel damper. Both the pump and damper are located in the fuel tank.

Fuel Damper

The fuel damper, which consists of a diagram, reduces fuel pressure pulsation in the fuel feed line between the fuel filter and injectors.

F.I.C.D. solenoid valve ...

SEF330f

Power Transistor Unit \& Ignition Coil

The ignition signal from the E.C.U. is amplified by the power transistor, which turns the ignition coil pimary circuit on and off, inducing the proper high voltage in the secondary circuit. The ignition coil is a small, molded type.

Air Regulator

The air regulator provides an air by-pass when the engine is cold for a fast idle during warm-up.
A bimetal, heater and rotary shutter are built into the air regulator. When the bimetal temperature is low, the air by-pass port opens. As the engine starts and electric current flows through a heater, the bimetal begins to turn the shutter to close the by-pass port. The air passage remains closed until the engine stops and the bimetal temperature drops.

Idle Air Adjusting (I.A.A.) Unit

The I.A.A. unit is made up of the A.A.C. valve, F.I.C.D. solenoid valve and idle adjust screw. It receives the signal from the E.C.I. and controls the idle speed at the preset value.

The F.I.C.D. solenoid valve compensates for changes in idle speed caused by the operation of the air compressor.

Auxiliary Air Control (A.A.C.) Valve

The E.C.U. actuates the A.A.C. valve by an ON/OFF pulse. The longer that ON duty is left on, the larger the amount of air that will flow through the A.A.C. valve.

Power Steering Oil Pressure Switch

The power steering oil pressure switch is attached to the power steering high-pressure tube and detects the power steering load, sending the load signal to the E.C.U. The E.C.U. then sends the idle-up signal to the A.A.C. valve.

Vehicle Speed Sensor

The vehicle speed sensor provides a vehicle speed signal to the E.C.U.

The speed sensor consists of a reed switch, which is installed in the speedometer unit and transforms vehicle speed into a pulse signal.

Detonation Sensor

The detonation sensor is attached to the cylinder block and senses engine knocking conditions.
A knocking vibration from the cyllinder block is applied as pressure to the piezoelectric element. This vibrational pressure is then converted into a voltage signal which is sent to the E.C.U.

E.G.R. Control Valve

The E.G.R. control valve controls the quantity of exhaust gas to be diverted to the intake manifold through vertical movement of a taper valve connected to the diaphragm, Vacuum is applied to the diaphragm in response to the opening of the throttle valve.

E.G.R. Control Solenoid Valve

The solenoid valve responds to the ON/OFF signal from the E.C.U. When it is off, a vacuum signal from the throttle chamber is fed into the E.G.R. control valve. When the control unit sends an ON signal, the coil pulls the plunger downward and cuts the vacuum signal.

Pressure Regulator Vacuum Relief (P.R.V.R.) Control Solenoid Valve

The solenoid valve responds to the ON/OFF signal from the E.C.U. When it is off, a vacuum signal from the intake manifold is fed into the pressure regulator. When the control unit sends an ON signal, the coll pulls the plunger downward and cuts the vacuum signal.

A.I.V. Control Solenoid Valve

The solenoid valve responds to the ON/OFF signal from the E.C.U. When it is ON, a vacuum signal from the intake manifold is fed into the A.I.V. control valve. When the control unit sends an OFF signat, the coil pulls the plunger downward and cuts the vacuum signal.

Wastegate Valve Control Solenoid Valve

The solenoid valve responds to the ON/OFF signal from the E.C.U. When it is ON , a vacuum signal from the suction pipe or compressor outlet is fed into the wastegate valve actuator. The actuator is hard to open at this time. When the control unit sends an OFF signal, the coil pulls the plunger upward and cuts the route to the suction pipe.

Fuel Filter

The specially designed fuel fitter has a metal case in order to withstand high fuel pressure.

Diagnostic Connector for CONSULT

The diagnostic connector for CONSULT is located above the hood release handle.

Air Induction Valve (A.I.V.)

The air induction valve sends secondary air to the exhaust manifold, using a vacuum created by exhaust pulsation in the exhaust manifold. When the exhaust pressure is below atmospheric pressure (negative pressure), secondary air is sent to the exhaust manitold. When the exhaust pressure is above atmospheric pressure, the reed valves prevent secondary air from being sent back to the sub-air cleaner.

Valve Timing Control (V.T.C.) Solenoid Valve

The valve timing control solenoids are installed at the rear end of the intake camshafts, and control oil pressure which regulates the position of the intake camshafts.

Carbon Canister

The carbon canister is filled with active charcoal to absorb evaporative gases produced in the fuel tank. These absorbed gases are then delivered to the intake manifold by manifold vacuum for combustion purposes.

Fuel Temperature Sensor

The fuel temperature sensor, built into the fuel tube, senses fuel temperature. When the fuel temperature is higher than specified, the E.C.C.S. control unit turns the P.R.V.R. control solenoid valve ON and raises fuel pressure.

Fuel Injection Control

INPUT/OUTPUT SIGNAL LINE

BASIC FUEL INJECTION CONTROL

The amount of fuel injected from the fuel injector, or the length of time the valve remains open, is determined by the E.C.U. The basic amount of fuel injected is a program value mapped in the E.C.U. ROM memory. In other words, the program value is preset by engine operating conditions determined by input signals (for engine rpm and air intake) from both the crank angle sensor and the air flow meter.

VARIOUS FUEL INJECTION INCREASE/DECREASE COMPENSATION

In addition, the amount of fuel injection is compensated tor to improve engine performance under various operating conditions as listed below.
<Fuel increase>

1) During warm-up
2) When starting the engine
3) During acceleration
4) Hot-engine operation
<Fuel decrease>
5) During deceleration

Fuel Injection Control (Cont'd) MIXTURE RATIO FEEDBACK CONTROL

The mixture ratio feedback system is used for precise control of the mixture ratio to the stoichiometric point, so that the threeway catalyst can reduce CO, HC and NOx emissions. This system uses an exhaust gas sensor in the exhaust manifold to check the air-fuel ratio. The control unit adjusts the injection pulse width according to the sensor voltage so the mixture ratio will be within the range of the stoichiometric air-fuel ratio.
This stage refers to the closed-ioop control condition. The open-loop control condition refers to that under which the E.C.U. detects any of the following conditions and feedback control stops in order to maintain stabilized fuel combustion.

1) Deceleration
2) High-load, high-speed operation
3) Engine idling
4) Malfunction of exhaust gas sensor or its circuit
5) Insufficient activation of exhaust gas sensor at low engine temperature
6) Engine starting

MIXTURE RATIO SELF-LEARNING CONTROL

The mixfure ratio feedback control system monitors the mixture ratio signal transmitted from the exhaust gas sensor. This feedback signal is then sent to the E.C.U. to control the amount of fuel injection to provide a basic mixture ratio as close to the theoretical mixture ratio as possible. However, the basic mixture ratio is not necessarily controlled as originally designed. This is due to manufacturing errors (e.g., air flow meter hot wire) and changes during operation (injector clogging, etc.) of E.C.C.S. parts which directly affect the mixture ratio.

Accordingly, a difference between the basic and theoretical mixture ratios is monitored in this system. It is then computed in terms of "fuel injection duration" to automatically compensate for the difference between the two ratios.

FUEL INJECTION TIMING

Two types of fuel injection systems are used - simultaneous injection and sequential injection. In the former, fuel is injected into all six cylinders simultaneously twice each engine cycle.
In other words, pulse signals of the same width are simultaneously transmitted from the E.C.U. to the six injectors two times for each engine cycle.
In the sequential injection system, fuel is injected into each cylinder during each engine cycle according to the firing order. When engine is starting, fuel is injected into alt six cylinders simultaneously twice per cycle.

Fuel to each cylinder is cut off during deceleration or highspeed operation.

Ignition Timing Control

INPUTIOUTPUT SIGNAL LINE

SYSTEM DESCRIPTION

The ignition timing is controlled by the E.C.U. in order to maintain the best air-fuel ratio in response to every running condition of the engine. The ignition timing data is stored in the ROM located in the E.C.U. This data forms the map shown below.
The E.C.U. detects information such as the injection pulse width and crank angle sensor signal which varies every moment. Then responding to this information, ignition signals are transmitted

Ignition Timing Control (Cont'd)

to the power transistor.
e.g. N: $1,800 \mathrm{rpm}, \mathrm{Tp}: 1.50 \mathrm{msec}$

A ${ }^{\circ}$ B.T.D.C.
In addition to this,

1) At starting
2) During warm-up
3) At idle
4) At low battery voltage
the ignition timing is revised by the E.C.U. according to the other data stored in the ROM.

The retard system, actuated by the detonation sensor, is designed only for emergencies. The basic ignition timing is pre-programmed within the anti-knocking zone, even if recommended fuel is used under dry conditions. Consequently, the retard system does not operate under normal driving conditions.

However, if engine knocking occurs, the detonation sensor monitors the condition and the signal is transmitted to the E.C.C.S. control unit. After receiving it, the control unit retards the ignition timing to eliminate the knocking condition.

Idle Speed Control

INPUTIOUTPUT SIGNAL LINE

SYSTEM DESCRIPTION

This system automatically controls engine ide speed to a specified level. Idie speed is controlled through fine adjustment of the amount of air which by-passes the throttle valve via A.A.C. valve. The A.A.C. valve repeats $O N / O F F$ operation according to the signal sent from the E.C.U. The crank angle sensor detects the actual engine speed and sends a signal to the E.C.U. The E.C.U.
then controls the ON/OFF time of the A.A.C. valve so that engine speed coincides with the target value memorized in ROM. The target engine speed is the lowest speed at which the engine can operate steadily. The optimum value stored in the ROM is determined by taking into consideration various engine conditions, such as noise and vibration transmitted to the vehicle interior, fuel consumption, and engine load.

Fuel Pump Control

INPUT/OUTPUT SIGNAL LINE

SYSTEM DESCRIPTION

Fuel pump and air regulator ON-OFF control

The E.C.U. activates the fuel pump for several seconds after the ignition switch is turned on to improve engine startwup. If the E.C.U. receives a 1° signal from the crank angle sensor, it knows that the engine is rotating, and causes the pump to activate. If the to signal is not received when the ignition switch is on, the engine stalls. The E.C.U. stops pump operation and prevents battery discharging, thereby improving safety. The E.C.U. does not directly drive the fuel pump. It controls the ON/OFF fuel pump relay, which in turn controls the fuel pump.

Fuel pump voltage control

The fuel pump is controlled by the fuel pump control unit adjusting the voltage supplied to the fuel pump.

Condition	Fuel pump operation
Igndion switch is turned to ON	Operates for 1 second
Engine running and cranking	Operates
When engine is stopped	Stops in 1.5 seconds
Except as shown above	Stops

Condition	Supplied voltage	
	Turbo mode	Nor-turbe model
- 1 second after ignition switch is turned ON - Eagine cranking - 30 (*NA)/5 ("TC) seconds after engine start [above $\left.50^{\circ} \mathrm{C}\left(722^{\circ} \mathrm{F}\right)\right]$ - Engine temperafure below $10^{\circ} \mathrm{C}\left(50^{\circ} \mathrm{F}\right)$ - Engine is running under heavy toad	Battery voitage	Battery voltage
- Engine is running under middie load	Approx. 7 V	Battery voltage
- Except the above	Approx. 6V	Approx. 8 V

E.G.R. (Exhaust Gas Recirculation) Control

input/output signal line

SYSTEM DESCRIPTION

In addition, a system is provided which precisely cuts and controls port vacuum applied to the E.G.R. valve to sutt engine operating conditions. This cut-and-control operation is accomplished through the E.C.U. When the E.C.U. detects any of the following conditions, current flows through the solenoid valve in the E.G.R. control vacuum line.

This causes the port vacuum to be discharged into the atmosphere so that the E.G.R. control valve remains closed.

1) Low engine temperature
2) Engine starting
3) High-speed engine operation
4) Engine idling
5) Excessively high engine temperature

Air Induction Valve (A.I.V.) Control

INPUT/OUTPUT SIGNAL LINE

SYSTEM DESCRIPTION

The air induction system is designed to send secondary aif to the exhaust manifold, utilizing the vacuum caused by exhaust pulsation in the exhaust manifold.
The exhaust pressure in the exhaust manifold usually pulsates in response to the opening and closing of the exhaust valve and decreases below atmospheric pressure periodically.
If a secondary air intake pipe is opened to the
atmosphere under vacuum conditions, secondary air can be drawn into the exhaust manifold in proportion to the vacuum.
The air induction valve is controlled by the E.C.C.S. control unit, corresponding to the engine temperature. When the engine is cold, the A.I.V. control system operates to reduce HC and CO . This system also operates during deceleration tor the purpose of blowing off water around the air induction valve.

Engine condition coolant Emperature ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	Vehicle speed $\mathrm{km} / \mathrm{h}(\mathrm{MPH})$	A.I.V. control solenoid valve	A.I.V. control system	
Throttle valve is at idle position	Below $64(147)$	Any condition		ON

Fuel Pressure Regulator Control

INPUTIOUTPUT SIGNAL LINE

Fuel temperature sensor	Fuel temperature	E.C.C.S. control unit	
Ignition switch	Start signal		P.R.V.R. control solenoid valve
Crank angie sensor	Engine speed		

SYSTEM DESCRIPTION

The fuel "pressure-up" control system briefly increases fuel pressure for improved starting performance of a hot engine. Under normal operating conditions, manifold vacuum is applied to the fuel pressure regulator. When starting the engine, however, the E.C.U. allows current to flow through the ON/OFF solenoid valve in the control vacuum line, opening this line to the atmosphere. As a result, atmospheric pressure is applied, restricting the fuel return line so as to increase fuel pressure.

Acceleration Cut Control

INPUT/OUTPUT SIGNAL LINE

SYSTEM DESCRIPTION

When the accelerator pedal is fully depressed, the air conditioner is turned off for a few seconds. This system improves acceleration when the air conditioner is used.

Valve Timing Control

INPUT/OUTPUT SIGNAL LINE

SYSTEM DESCRIPTION

The valve timing control system is utilized to increase engine performance. Intake valve opening and closing time is controlled, according to the engine operating conditions, by the E.C.U. Engine coolant temperature signals, engine
speed, amount of intake air, throttle valve position and gear position are used to determine intake valve timing.
The intake camshaft pulley position is regulated by oil pressure, which is controlled by the valve timing control solenoid valve.

ENGINE AND EMISSION CONTROL SYSTEM DESCRIPTION

Valve Timing Control (Cont'd)

OPERATION

Engine operating condition	Valve timing control solenoid valve	Intake valve opening and closing time	valve overtap	Engine torque curve
Iding, high speed	OFF	Retard	Decreased	(I)
Low to medium speed	ON	Advance	Increased	(II

Radiator Fan Control

INPUT/OUTPUT SIGNAL LINE

The E.C.U. controls the radiator fan corresponding to the vehicle speed, engine temperature, and air conditioner ON signal. The non-turbo model has 2-step control $1 \mathrm{ON}(\mathrm{FIGH}) / \mathrm{OFF}$) and the turbo model 3-step control [HIGH/LOW/OFF].

OPERATION

[Non-turbo model]

Alr conditioner switch is "OFF"

Engine coolant temperature ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	Radiator \ddagger an
Below 104 (219)	QFF
Above 105 (221)	ON

[Turbo model]
Air conditioner switch is "OFF"

Engine coolant temperature ${ }^{\circ} \mathrm{C}\left({ }^{2} \mathrm{~F}\right)$	Radiator fan
Below $104(219)$	OFF
Above $105(221)$	ON

Alr conditioner switch is "ON"

Vehicle speed km/n (MPH)	Engine coolant temperature ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	Radiator fan
Below 39 (24)	Below 94 (201)	OFF
	Above 95 (203)	$\begin{gathered} \mathrm{ON} \\ \text { (HIGH) } \end{gathered}$
Above 40 (25)	Betow 104 (219)	OFF
	Above 105 (221)	$\begin{gathered} \mathrm{ON} \\ (\mathrm{HIGH}) \end{gathered}$

Air conditioner swltch is "ON"

Vehicle speed km / h (MPH)	Engine coolant temperature ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	Radiator łan
Below 39 (24)	Below 89 (192)	OFF
	Between $90(194) \text { and } 99(210)$	LOW
	Above 100 (212)	HIGH
Above 40 (25)	Below 104 (219)	OFF
	Above 105 (221)	HIGH

Wastegate Valve Control

INPUTIOUTPUT SIGNAL LINE

SYSTEM DESCRIPTION

The wastegate valve control solenoid valve changes the source vacuum which activates the actuator. This results in a suitable turbopressure.

OPERATION

When detonation signs are detected, which means a low octane fuel is being used, the solenold valve turns OFF, and turbocharger pressure becomes low.

Engine condition	Wastegate valve controt solenaid valves	Wastegate valve actua- tors	Turbocharger pressure
- Engine ruming or cranking - Throtte sensor output voltage: more than 0.1v - Judged fuel quality: high octane (Detecting no sign of detonation)	ON	Lead to staction pipe or turbocharger compressor outlet	HGH
Except the above	OFF	Lead to turbocharger compressor outlet	LOW

Fail-safe System

C.P.U. MALFUNCTION OF E.C.U.

input/output signal line

Outline

The fail-safe system makes engine starting possible if there is something malfunctioning in the E.C.U.'s C.P.U. circuit.

In former models, engine starting was difficult under the previously mentioned conditions. But with the provisions in this fail-safe system, it is possible to start the engine.

Fall-safe System (Cont'd)

Fall-safe system activating condition when

E.C.U. is malfunctioning

The fail-safe mode operation starts when the computing function of the E.C.U. is judged to be maftunctioning.
When the fail-safe system activates, i.e. if a malfunction condition is detected in the C.P.U. of the E.C.U., the CHECK ENGINE LIGHT on the instrument parel lights to warn the driver.

Engine control, with fail-safe system, operates when E.C.U. is malfunctioning

When the fail-safe system is operating, fuel injection, ignition timing, fuel pump operation, engine idle speed, E.G.R. operation, and so on are controlled under certain limitations.

Cancellation of fail-sate system when E.C.U. is malfunctioning

Activation of the fail-safe system is canceled each time the ignition switch is turned OFF. The system is reactivated if all of the activating conditions are satisfied after turning the ignition switch from OFF to ON.

AIR FLOW METER MALFUNCTION

If the air flow meter output voltage is above or below the specified value, the E.C.U. senses an air flow meter malfunction. In case of a malfunction, the throttle sensor substitutes for the air flow meter.
Although the air flow meter is malfunctioning, it is possible to start the engine and drive the vehicle. But engine speed will not rise more than 2,400 rpm in order to inform the driver of fail-safe system operation while driving.

Operation

Engine condition	Starter switch	Fail-sate syster	Fail-sate functioning
Stopped	ANY	Does not operate	- - - - -
Cranking	ON	Operates	Engine will be started by a pre-detemmed inlection pulse on E.C.U.
Running	OFF		Engine speed will not fise above 2,400 rpm

ENGINE TEMPERATURE SENSOR MALFUNCTION

When engine temperature sensor output voltage is below or above the specified value, engine coolant temperature is fixed at the preset value as follows:

Engine condition	Engine coolant temperature preset value ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$
Start	$20(68)$
Atinning	$80(176)$

FUEL TEMPERATURE SENSOR MALFUNCTION

When fuel temperature sensor output voltage is below or above the specified value, fuel temperature is fixed at the preset value as follows:

Engine condifion	Fuel temperature preset value ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$
Start	$20(68)$
Running	$80(176)$

Direct Ignition System

CHECKING IDLE SPEED AND IGNITION TIMING

Idle speed

- Wethod A (With pulse type tachometer)

Clamp loop wire as shown.

- Method B (With voltage type fachometer)

1. Disconnect check connector (Harness color: Y/R) for tachometer.
2. Connect tachometer using a suitable tool.

Ignition timing

- Method A (Without S.S.T.)

1. Remove No. 1 ignition coil.
2. Connect No. 1 ignition coil and No. 1 spark plug with a suitable hightension wite as shown, and attach timing light clamp to this wire.
3. Check ignition timing.

Direct Ignition System (Cont'd)

4. For above procedures, enlarge the end of a suitable high tension wire with insulating tape as shown.

- Method B (Wih S.S.T.)

1. Disconnect connector of No. 1 ignition coil.
2. Connect S.S.T. and clamp wire with timing light as shown.
3. Check ignition timing.

Align direction marks on S.S.T. and timing light clamp if allgning mark is punched.

PREPARATION

1. Make sure that the following parts are in good order.

- Battery
- Ignition system
- Engine oil and coolant levels
- Fuses
- E.C.U. harness connector
- Vacuum hoses
- Air intake system
(Oil filler cap, oil level gauge, etc.)
- Fuel pressure
- Engine compression
- E.G.R. control valve operation
- Throttle valve

2. On air conditioner equipped models, checks
should be carried out while the air conditioner is "OFF".
3. On automatic transmission equipped models, when checking idle rpm, ignition timing and mixture ratio, checks should be carried out while shift lever is in " N " position.
4. When measuring "CO" percentage, insert probe more than $40 \mathrm{~cm}(15.7 \mathrm{in})$ into tall pipe.
5. Turn off headlamps, heater blower, rear defogger.
6. Keep front wheels pointed stralght ahead.
7. Make the check after the radlator fan has slopped.
WARNING:
Apply parking brake and block both front and rear wheels with chocks.

Overall inspection sequence

EF \& EC-39

Contents

How to Perform Trouble Diagnoses for Quick and Accurate Repair EF \& EC- 44
Self-diagnosis EF \& EC- 48
Self-diagnosis -m Mode I EF \& EC- 50
Sell-diagnosis - Mode Il (Self-diagnostic results) EF \& EC- 50
Self-diagnosis - Mode II (Exhaust gas sensor monitor) EF \& EC- 53
Consult EF \& EC- 54
Diagnostic Procedure EF \& EC- 60-A
Basic Inspection EF \& EC- 61
Diagnostic Procedure 1 - High Idling after Warm-up EF \& EC- 64
Diagnostic Procedure 2 - Hunting EF \& EC- 65
Diagnostic Procedure 3 - Unstable Idie EF \& EC- 67
Diagnostic Procedure 4 - Hard to Start or Impossible to Start when the Engine is Cold EF \& EC- 71
Diagnostic Procedure 5 - Hard to Start or Imposslble to Start when the Engine Is Hot EF \& EC- 73
Diagnostic Procedure 6 - . Hard to Start or Impossibie to Start under Normal ConditionsDiagnostic Procedure 7-- Hesitation when the Engine is HotEF \& EC- 77
Dlagnostic Procedure 8 - Hesitation when the Engine is Cold EF \& EC- 78
Diagnosfic Procedure 9 - Hesitation under Normal Conditions EF \& EC- 79
Diagnostic Procedure 10 - Engine Stalis when Turning EF \& EC- 81
Diagnostic Procedure 11 - Engine Stalls when the Engine is Hot EF \& EC. 83
Diagnostic Procedure 12 - Engine Stalls when the Engine is Cold EF \& EC- 85
Diagnostic Procedure 13 - Engine Stalls when Stepping on the Accelerator Momentarily EF \& EC- 87
Diagnostic Procedure 14 - Engine Stalls after Decelerating EF \& EC- 89
Diagnostic Procedure 15 - Engine Stalls when Accelerating or Cruising EF \& EC- 93
Diagnostic Procedure 16 - Engine Stalls when the Electrical Load is Heavy EF \& EC 96
Dlagnostic Procedure 17 - Lack of Power and Stumble EF \& EC- 98
Diagnostic Procedure 18 - Detonation EF \& EC- 99
Diagnostic Procedure 19 -.. Surge EF \& EC-101
Diagnostic Procedure 20 - Backfire through the Intake EF \& EC-102
Diagnostic Procedure 21 - Backfire through the Exhaust EF \& EC-103
Diagnostic Procedure 22
MAIN POWER SUPPLY AND GROUND CIRCUIT EF \& EC-104
Diagnostic Procedure 23 CRANK ANGLE SENSOR EF \& EC-106
Diagnostic Procedure 24
AIR FLOW METER EF \& EC-110
Diagnostic Procedure 25
ENGINE TEMPERATURE SENSOR EF \& EC-114
Diagnostic Procedure 26 VEHICLE SPEED SENSOR EF \& EC-116
Diagnostic Procedure 27IGNITION SIGNALEF \& EC-1 18
Diagnostic Procedure 28 ENGINE CONTROL UNIT. EF \& EC-122
Dlagnostic Pracedure 29 E.G.R. FUNCTION EF \& EC-124
Diagnostic Procedure 30 EXHAUST GAS SENSOR EF \& EC-128
Diagnostic Procedure 31 DETONATION SENSOR EF \& EC-132
Diagnostic Procedure 32
FUEL TEMPERATURE SENSOR EF \& EC-134
Diagnostic Procedure 33
THROTTLE SENSOR EF \& EC-136

TROUBLE DIAGNOSES

Contents (Cont'd)

Diagnostic Procedure 34

\qquad
Diagnostic Procedure 35
THROTTLE VALVE SWITCH (Idle position) ...EF \& EC-142
Dlagnostic Procedure 36
START SIGNAL
EF \& EC-144
Diagnostic Procedure 37
POWER STEERING OIL PRESSURE SWITCH ..EF \& ECm146
Diagnostic Procedure 38
NEUTRAL SWITCH \& A/T CONTROL UNIT (NEUTRAL SIGNAL) CIRCUIT EF \& EC-148
Diagnostic Procedure 39
FUEL PUMP
EF \& EC-150
Diagnostic Procedure 40
\qquad
Diagnostic Procedure 41
A.A.C. VAL.VE

EF \& EC-156
Diagnostic Procedure 42
F.IC.D. SOLENOID VALVE... \& EC-158

Diagnostic Procedure 43
A.IV. CONTROL SOLENOID VALVE...EF \& EC-160

Diagnostic Procedure 44
P.R.V.R. CONTROL SOLENOID VAL.VE ..EF \& EC-162

Dlagnostic Procedure 45
\qquad
Diagnostic Procedure 46
RADIATOR FAN CONTROL ...EF \& EC-166
Diagnostic Procedure 47 WASTEGATE VALVE CONTROL SOLENOID VALVE ..EF \& EC-170
Electrical Components Inspection ..EF \& EC-172

How to Perform Trouble Diagnoses for Quick and Accurate Repair
 INTRODUCTION

The engine has an electronic control unit to control major systems such as fuel control, ignition control, idle speed control, etc. The control unit accepts input signals from sensors and instantly drives actuators. It is essential that both kinds of signals are proper and stable. At the same time, it is important that there are no conventional problems such as vacuum leaks, fouled spark plugs, or other problems with the engine.
It is much more difficult to diagnose a problem that occurs intermittently rather than continuously. Most intermittent problems are caused by poor electric connections or improper wiring. In this case, careful checking of suspected circuits may help prevent the replacement of good parts.
A visual check only may not find the cause of the problems, so a road test with a circuit tester connected to a suspected circuit should be performed.
Before undertaking actual checks, take just a few minutes to talk with a customer who approaches with a driveability complaint. The customer is a very good supplier of information on such problems, especially intermittent ones. Through interaction with the customer, find out what symptoms are present and under what conditions they occur.
Start your diagnosis by looking for "conventional" problems first. This is one of the best ways to troubleshoot driveability problems on an electronically controlled engine vehicle.

TROUBLE DIAGNOSES

How to Perform Trouble Diagnoses for Quick and Accurate Repair (Cont'd) WORK FLOW

*1: If the self-diagnosis cannot be performed, check main power supply and ground circuit. (See Piagnostic Procedure 22.)
*2: If the trouble is not duplieated, see INTERMITTENT PROBLEM SINULATION (EF \& EC-47).

TROUBLE DIAGNOSES
How to Perform Trouble Diagnoses for Quick and Accurate Repair (Cont'd)

Worksheet sample

DIAGNOSTIC WORKSHEET
There are many kinds of operating conditions that lead to malfunctions on engine components.
A good grasp of such conditions can make trouble-shooing faster and more accurate.
In general, feelings for a problem depend on each customer. It is important to fully understand the symptoms or under what conditions a customer complains.
Make good use of a diagnostic worksheet such as the one shown below in order to utilize all the complaints for troubleshooting.

TROUBLE DIAGNOSES
How to Perform Trouble Diagnoses for Quick and Accurate Repair (Cont'd)
 INTERMITTENT PROBLEM SIMULATION
In order to duplicate an intermittent problem, it is effective to create similar conditions for component parts, under which the problem might occur.
Perform the activity listed under Service procedure and note the resulf.

	Variable factor	Influential part	Target condition	Service procedufe
1	Mixture ratio	Pressure regulator	Made Iean	Remove vacuum hose and apply vacuum.
			Made rich	Remove vacuum hose and apply pressure.
2	Ignition timing	Crank angle sensor	Advanced	Rotate distributor counterclockwise.
			Retarded	Rotate distributor clockwise.
3	Mixture ratio teedback control	Exhaust gas sensor	Suspended	Disconnect exhaust gas sensor harness con* nector.
		Control unt	Operation check	Perform self-diagnosis (Mode il) at $2,000 \mathrm{rpm}$.
4	Ide speed	A.A.C. valve	Raised	Turn ide adjusting screw counterclockwise.
			Lowered	Turn idte adjusting scfew clockwise.
5	Electrical connection (Electric continuity)	Harness connectors and wires	Poor electrical confection or improper wiring	Tap or wiggle.
				Race engine rapidy. See it the torque reaction of the engine unit causes efectric breaks.
6	Temperature	Control unit	Cooled	Cool with an icing spray or similar device.
			Warmed	Heat with a hair drier. [WARNING: Do not overheat the unit.]
7	Moisture	Electric parts	Damp	Wet. [WARNING: Do not directly pour water on components. Use a mist sprayer.]
8	Electric loads	Load switches	Loaded	Turn on headlamps, air conditioner, rear defogger, etc.
ϑ	lde switch condition	Control tinit	ON-OFF switching	Rotate throttle sensor body.
10	lgnition spark	Timing light	Spark power check	Try to flash timing light for each cylinder using ignition coil adapter (S.S.T.).

Self-diagnosis

CHECK ENGINE LIGHT

A check engine light has been adopted. This light blinks simultaneously with the RED L.E.D. on the E.C.U.
E.C.U. L.E.D.
in the E.C.U., the Green and Red L.E.D.'s have now been permanently changed to one RED L.E.D.

DIAGNOSTIC MODE SELECTOR
The diagnostic mode selector is on the side of the E.C.U.

CHECK CONNECTOR

The check connector is under the driver's side dash.

SELF-DIAGNOSTIC FUNCTION

Condition Mode		Mode I	Mode II
Ignition switch in 'ON" position	Engine stopped	BLLB CHECK	SELF-OIAGNOSTIC RESULTS
tion	Engine running解	MALFUNCTION WARAING	EXHAUST GAS SENSOA MON:TOR

Self-diagnosis (Cont'd) HOW TO SWITCH MODES

- Switching the modes is not possible when the engine is running.
- When the ignition switch is turned off during diagnosis in each mode, and then turned back on again after power to the

EF \& EC-49

Self-diagnosis - Mode I

MODE I -- BULB CHECK

In this mode, the RED L.E.D. in the E.C.U. and the CHECK ENGINE LIGHT in the instrument panel stay "ON".
If either remain "OFF", check the bulb in the CHECK ENGINE LIGHI or the RED L.E.D.

MODE I -malmunction WARNing

CHFCK ENGINE LIGHT and FED L.E.D.	
ON	When the E.C.U.'s C.P.U. is malfunctioning.
OFF	O.K.

Self-diagnosis — Mode II (Self-diagnostic results)

CAUTION:
The mode selector on the E.C.U. musi be relurned to the fully counterclockwise position, except when switching the modes.

DESCRIPTION

In this mode, a malfunction code is indicated by the number of flashes from the RED L.E.D. or the CHECK ENGINE LIGHT as shown below:

Long (0.6 second) blinking indicates the number of ten digits and short (0.3 second) blinking indicates the number of single digits. For example, the red L.E.D. flashes once for 0.6 seconds and then it flashes twice for 0.3 seconds. This indicates the number " 12 " and refers to a malfunction in the air flow meter. In this way, all the problems are classified by their code numbers.

Code No.	Detected items
11	Crank angle sensor circuit
12	Air fow meter circuit
13	Engifu temperature sensof circuit
$2 \dagger$	fgnizion signal circuit
34	Detonation sensor circuit
42	Fuel temperature sensor circuit
43	Throttle sensor circuit
54	Signal circuit from A/T control unit to E.C.U. (A/T only)
55	No malfunction in the above circuits

Code No.	Detecteditems	Malfunction is detected when ...	Check item (remedy)
*11	Crank angle sensor circult	- Either to or 120° signal is not entered tor the first few seconds during engine cranking. Either f° or 120° signal is not imput often enough while the engine speed is higher than the specified rom.	- Harness and connector (lif harness and connector are normad, replace crank angie sefm sor.)
12	Air flow meter circuit	- The aif flow meter circuit is open or shorted. (An abnormally figh or low voltage is entered.)	- Harness and connector (If harness afd connector are normal, replace air flow meter.)
13	Engine temperature sensor circuit	- The engine temperature sensor circuit is open or shorted. (An abnormally high or low outpat voltage is entered.)	- Harness and comnector - Engine temperature sensor
*21	agnition signal circuit	- The ignition signal in the primafy circuit is not entered during engine cranking or running.	- Harness and comnector - Power taansistor unit
34	Detonation sensor circぁit	- The detonation circuit is open or shorted. (An abnormally high or low voltage is entered.)	Harmess and connector Detonation sensor
42	Fuel temperakure sensor circuit	- The fuel temperature sensor circuit is open of shorted. (An abnormally high or fow voltage is entered.)	- Harness and connector - Fuel temperature sensor
43	Throttie sensor circuit	- The throtte sensor circuit is open or shorted. (An abnormally high or tow voltage is entered.)	Harness and zonnector Throttle sensor
54	Signal circuit from ATT control unit to E.E.U. (A/T only)	- The A/T communication lne is open or shorted.	- Harmess and connector

[^7]
Self-diagnosis - Mode II (Self-diagnostic results) (Cont'd) RETENTION OF DIAGNOSTIC RESULTS

The diagnostic resufts will remain in E.C.U. memory until the starter is operated fifty times after a diagnostic item has been judged to be malfunctioning. The diagnostic result will then be cancelled automatically. If a diagnostic item which has been judged to be malfunctioning and stored in memory is again judged to be maffunctioning before the starter is operated fifty times, the second result wilf replace the previous one. It will be stored in E.C.U. memory until the starter is operated fity times more.

RETENTION TERM CHART (Example)

HOW TO ERASE SELF-DIAGNOSTIC RESULTS

The malfunction code is erased from the backup memory on the E.C.U. when the diagnostic mode is changed from Mode Il to Mode I. (Refer to "HOW TO SWITCH MODES'.)

- When the battery terminal is disconnected, the malfunction code will be losi from the backup memory within 24 hours.
- Before starting self-dfagnosis, do not erase the stored memory before beginning self-diagnosis.

Self-dlagnosis - Mode II (Exhaust gas sensor monitor)

DESCRIPTION

In this mode, the CHECK ENGINE LIGHT and RED L.E.D. display the condition of the fuel mixture (lean or rich) which is monitored by the exhaust gas sensor.

CHECK ENGINE LIGHY and AED L.E.D.	Fuel mixture condition in the exhaust gas	Air fuel ratio feedback controt condition
ON	Lean	Closed loop control
OFF	Rich	Open loop control
Remains ON or OFF	Any condition	Onmer

*: Maintains conditions just before switching to open loop.
If two exhaust gas sensors (right side and left side) are titted on the engine, the left side exhaust gas sensor monitor operates first, when selecting this mode.

HOW TO CHANGE MONITOR FROM LEFT SIDE (Right side) TO RIGHT SIDE (Left side)

1. Turn diagnostic mode selector on E.C.U. fully clockwise.
2. Wait at least 2 seconds.
3. Turn diagnostic mode selector on E.C.U. fully counterclockwise.

- These procedures should be carried out when the engine is running.

HOW TO CHECK EXHAUST GAS SENSOR

1. Set Mode Il. (Refer to "HOW TO SWITCH MODES".)
2. Start engine and warm it up until engine coolant temperature indicator points to the middle of the gauge.
3. Run engine at about $2,000 \mathrm{rpm}$ for about 2 minutes under no-load conditions.
4. Make sure RED L.E.D. or CHECK ENGINE LIGHT goes ON and OFF more than 5 times every 10 seconds; measured at $2,000 \mathrm{rpm}$ under no-load.

Consult

CONSULT INSPECTION PROCEDURE

1. Turn off ignition switch.
2. Connect "CONSLLLT" to diagnostic connector.
(Diagnostic connector is located in left dash side panel.)
3. Turn on ignition switch.
4. Touch "START".
5. Touch "ENGINE".
6. Perform each diagnostic mode according to the inspection sheet as follows:
For further information, see the CONSULT Operation Manual.

TROUBLE DIAGNOSES

Consult (Cont'd)

E.C.C.S. COMPONENT PARTS APPLICATION

E.c.c.s	MODE COMPONENT PARTS	WORK SUPPORT	SELF- DIAGNOSIIC RESULTS	DATA MONITOR	ACTIVE TEST
INPUT	Control unit (E.C.U.)		X		
	Crank angle sensor		X	x	
	Air flow metef		X	X	
	Engife temperature sensor		X	x	X
	Exhaust gas sensors		${ }^{*}$	\times	
	Vehicle speed sensor		x	X	
	Throttle sensor	x	X	X	
	Fuel temperature sensor		X	X	
	Defonation sensor		x		
	lgnition switch (start signal)			X	
	Air conditioner switch			X	
	Neutral switch			x	
	Power steering oil pressure switch			X	
	Battefy			X	
	A/T signal		X	X	
*	Exhaust gas temperature sensor		${ }^{*}$	${ }^{*}$	
OUTPUT	Injectors		X	X	X
	Power transistors (ignition signal)	x (lanlsion timing	X	X (Ignition timing)	X
	A.A.C. valve	X		X	x
	F.I.C.D. solenoid valve			X	X
	Valve timing control solenoid valve			X	x
	A.I.V. control solenoid valve			X	x
	P.R.V.R. control solenoid valve		${ }^{*}$		X
	E.G.F. controf solenoid valve			X	X
	Wastegate vaive control soienoid valves			X	
	Air conditioner relay			X	
	Fuel pump relay	X		X	x
	Radiator fan			X	X

X Applicable : U.S.A. model

Consult (Cont'd)

FUNCTION

Diagnostic mode	Function
Work support	This mode enables a technician to adjust some devices faster and more accurately by following the indications on the CONSLuLT unit.
Self-diagnostic results	Self-diagnostic results can be read and erased quickly.
Data monitor	Input/Output data in the control unit Can be read.
Active test	Mode in which Consult drives some actuators apart from the con- trol units and also shifts some pa- rameters in a specified range.
E.C.U. part numbers	E.U. part number can ba read.

WORK SUPPORT MODE

WORK ITEM	CONDITION	USAGE
THROTTLE SENSOR AD.USTMENT	CHECK THE THROTTEE SENSOR SIGNAL. ADJUST IT TO THE SPECIMED VALUE BY ROTATING THE SENSOR BODY UNDER THE FOLLOWING CONDITIONS. - IGN SW 'ON" - ENG NOT RUNNING - acc pedal not pressed	When adjusting throttse sensor inilial position.
IGNTTON TIMING ADJUSTMENT*	- IGNITION TIMING FEEDBACK CONTROL WILL BE HELD BY TOLUCHING "START". AFTER DOING SO, ADJUST IGNITION TIMING WITH A TIMING LIGHT BY TURNING THE CRANK ANGLE SENSOR.	When adjusting initial ignition timing.
AAC VALVE ADUSTMENT	SET ENGINE RPM AT THE SPECIFIED VALUE UNDER THE FOLLOWING CONDITIONS. - ENGINE WARMED LP - No-load	When adjusting idle speed.
FUEL PRESSURE RELEASE	- FIEL PUMP WILL STOP BY TOUCHING "START" DURING IDLING. CRANK A FEW TIMES AFTER ENGINE STALLS.	When releasing fuel pressure from fuel line.

: The ignition timing feedback controf is not adopted on model $300 Z \mathrm{X}$, so it is not necessary to pertorm IGNITION TIMING ADJUSTMENT

SELF-DIAGNOSTIC RESULTS MODE

DIAGNOSTIC ITEM	DIAGNOSTIC ITEM IS DETECTEE WHEN ...	CHECK ITEM (REMEDY)
CRANK ANGLE SENSOR*	- Either 1° or 120° signal is not entered for the forst few seconds during engine cranking. Either 1° or 120° signal is not input often enough while the engine speed is higher that the specified rpm.	- Harness and connector (If harness and connector are normal, replace crank angle sensor.)
AIR FLOW METER	- The air flow meter circuit is open or shofted. (An abnormaliy high or tow voltage is entered.)	- Harness and connector (If harness and connector afe normal, replace air flow meter.)
ENGINE TEMP SENSOR	The engine temperature sensor circuit is open or shorted. (An abnormally high or fow output voltage is entered.)	- Harness and connector - Engine temperature sensor
IGN SIGNAL-PRIMARY*	- The ignition signa! in primary circuit is not entered during engine cranking or ruming.	- Harness and connector - Power transistor unit
CONTHOL UNIT	- E.C.U. calculation function is malfunctioning.	(Replace E.C.C.S. control unit.)
DETONATION SENSOA	- The detonation circuit is open or shorted. (An abnormally high or fow voltage is entered.)	- Harness and connector - Detonation sensor
FUEL TEMP SENSOR	- The fuel temperature sensor circuit is open or shorted. (An abnormally high or tow voltage is entered.)	- Harness and comector - Fuel temperature sensor
THROTTLE SENSOR	- The throttle sensor circuit is open or shorted. (An abnormally high or fow voltage is entered.)	- Harness and connector - Throttle sensor
A/T COMM LINE	- The A/T communication line is open or shorted.	- Harness and comnector

\because Check items causing a maltunction of crank angle sensor circuit first, is both "CRANK ANGLE SENSOR" and "IGN SIGNAL—PRIMARY" are displayed at the same time.

TROUBLE DIAGNOSES

Consult (Cont'd)

DATA MONITOR MODE

Remarks; The monitor item marked "**" is applicable to vehicles for the U.S.A. only

- Specification data are reference valnes
- Specification data are outputinput values which are detected or supplied by E.C.U. at the connector.
* Specification data may not be directly related to their components signals/values/operations
ie. Adjust ignition fiming with a timing light before monitoring IGN TIMING, because the monitor may show the specification data in spite of the ignition timing being not adjusted to the specification data. This lGN TIMING monitors the calculated data by E.C.U. according to the inpat signals from crank angle sensor and other ignition timing related sensors.

MONTIOR ITEM	CONDITION		SPECI	ATION	CHECK ITEM WHEN OUTSIDE SPEC.
			Non-turbo	Turbo	
$\begin{aligned} & \text { CAS-RPM } \\ & \text { (POS) } \end{aligned}$	- Tachometer: Connect - Run engine and compare tachometer indication with the CONSULT value.		Almost the same speed as the CONSULT value.		- Harness and connector - Crank angle sensor
CAS-RPM (REF)					
AIR FIOW MTR	- Engine: After warming up, idle the engine - A/C switch 'OFF' - Shift lever "N" - No-load	Idle	0.8-1.5V	0.9-1.4V	- Harness and connector - Air flow meter
		2,000 ppm	1.4-1.8V	1.4 - 1.8 V	
ENG TEMP SEN	- Engine: After warming up		More than $70^{\circ} \mathrm{C}\left(158^{\circ} \mathrm{F}\right)$		- Harness and connector - Engine temperature sensor
EXH GAS SEN	- Engine: After warming up	Maintaining engine speed at $2,000 \mathrm{rpm}$	$0-0.3 \mathrm{~V}+3.6-1.0 \mathrm{~V}$		- Harness and connector - Exhaust gas sensor - Intake air leaks - Injectors
EXH GAS SEN-R					
MNT			$\text { LEAN } \leftrightarrow \text { RICH }$ Changes more than 5 times during 10 seconds.		
M/R F/C MNT-R					
CAR SPEED SEN	- Turn drive wheels and compare speedometer indication with the CONSULT value		Almost the same speed as the CONSULT value		- Harness and connector - Vehicle speed sensor
BATTEAY VOLT	- Ignition switch: ON (Engine stopped)		$11+14 \mathrm{~V}$		- Battery - E.C.U. power supply eircuit
throttle	- Igaition switch: ON (Engine stopped)	Throtle valve fully closed	0.4-0.5V		- Harness and connector - Throtile sensor - Throttle sensor adjustment
S		Throttle valve fully opened	Approx. 4.0 V		
FUEL TEMP SEN	- Engine: After warming up		$20-60^{\circ} \mathrm{C}\left(68 \cdot 140^{\circ} \mathrm{F}\right)$		- Harness and connector - Fuel temp. sensor
START SIGNAL	- Ignition switch: ON \rightarrow START		OFF \rightarrow ON		Harness and connector Starler switch
IDLE POSITION	- Ignition switch: ON (Engine stopped)	Throttle valve: Idle position	ON		- Harness and comnector - Throttle sensor - Thfottle sensor adjustment
		Throttle valve: Slightly open	OFF		

TROUBLE DIAGNOSES
Consult (Cont'd)

MONITOR ITEM	CONDITION		SPECIFICATION		CHECK ITEM WHEN OUTSIDE SPEC.
			Non-turbo	Turbo	
AR COND SIG	- Engine: Atter warming up, ide the engine	A/C switch 'OFF'	OFF		- Harness and connector - Air conditioner switch
		A/C switch "ON"	ON		
NEUFRAL SW	- Ignition switch: ON	Shift lever "P" or "N"	ON		- Harness and connector - Neutral switch
		Except above	OFF		
PW/ST SIGNAL	Engine: After warming up, idle the engine	Steering wheet in neutral (forward direction)	OFF		- Harness and comenector - Power steering oil pressure switch
		The steering whee is turned	ON		
INJ PULSE	- Engine: Attef warming却A/C switch "OFF"Shift lever " N "No-load	Idte	$2.0-3.0$ msec	1. $8-2.5$ msec.	- Harness and connector - Injector - Air flow meter - Intake air system
INJ PULSE-R		2,000 pm	$2.0-3.0$ msec.	$1.8-2.2$ msec.	
IGN TIM ${ }^{\text {TiNG }}$	ditto	Idle	+500.T.O.C.	15° B.t.D.C.	- Harness and connector - Crank angle sensor
		2,000 rpm	More than 25° B.T.D.C.	More than 25° B.7.O.C.	
AAC VALVE	ditto	Idle	15-40\%	15-35\%	- Harness and comnector - A.A.C. valve
		$2,000 \mathrm{rpm}$	-	-	
EGR TEMP SEN**	- Engine: After warming up		Less than 4.5 V		- Harness and connector - Exhaust gas temperature sensor

TROUBLE DIAGNOSES
Consult (Cont'd)

TEST TEM	CONOTITIN	JUDGMENT	CHECK ITEM (REMEOY)	
${ }_{\text {TEST }}^{\text {FUEL INECTION }}$	- Engine: Return to the original trouble condition - Change the amount of fuel injection with the CONSULT.	1 H trouble symptom disappears, see CHECK ITEM	- Harness and connector - Fuel injectors © Exhaust gas sensor	
AAC/N OPENING TEST	- Engine: Atter warming up, idele the engine. - Change the $A A C$ valve opening per cent with the CONSUET.	Engine speed changes according to the opening percent.	- Hafness and connector - AAC valve	
engine temp TEST	- Engine: Return to the original trouble condition - Change the engine coolant temperature with the CONSULT.	解 trouble symptorm tisappears, see CHECK ITEM.	- Harness and connector - Ergine temperalure sensor - Fuel injectors	
IGN TIMING TEST	- Engine: Return to the original trouble condition - Timing light: Set - Retard the igntion uming with the CONSULT.	If trouble symptom disappears, see СНЕСК ТТЕМ.		
power balance TEST	- Engine: Atter warming up, idite the engine. - A/C switch "OfF" - Shitit ever "N" - Cut off each Injector signal one at a time with the CONSULT.	Engine runs rough or dies.	- Harness and connector - Compression - Injectors - Power trangistor - Spark plugs - Ignition coils	
$\begin{aligned} & \text { RADIATOR FAN } \\ & \text { TEST } \end{aligned}$	- Ignition switch: ON - Turn the radiator tan "ON" and "OFF" with the CONSULT.	Radiator ran moves and stops.	- Harness and connector - Radlator lan motor	
FICD SOLN TEST	- Engine: After warming tup, idle the engine. - A/C 5 witeh "OFF" - Shift lever "N" - Turn the FCOD solenoid valve 'ON' with the CONSULT.	Engine speed will increase momentarily by approx. 200 rprr	- 㨄afnes and confector - FICD solendid valve	
$\underset{\text { TEST }}{\text { FUEL PUMP RLY }}$	- Ignition switch: ON (Engine stopped - Turn the fuef pump relay "ON" and "OFF" with the CONSULTT and \\|sten to operating sound.	Fuel pump relay makes the operating sound.	- Harness and connector - Fuel pumpa relay	
EGR CONT SOLN TEST	- Ignition switch: ON - Turn solenid valve "ON" and "OFF" with the CONSULT and listen to operating sound.	Each solenoid vaive makes an operat ing sound.	- Harness and confector - Selenoid vaive	
pava cont soln TEST				
AIV CONT SOLN test				
valve tim sol TEST				
SELF-LEARN CONT TEST	- In this test, the coefficient of self-learring control mixture rato retums to the original coefficient by touching "CLEAR' on the screen.			

TROUBLE DIAGNOSES

5. Before replacing E.C.U., perform E.C.U. Input/output signal inspection and make sure whether E.C.U. functions properly or not. (See page EF \& EC-174.)

6. Atter pertorming this "Dlagnostic Procedure", perform
E.c.c.s. self-diagnosis and driving test.
3. When connecting or disconnecting pin connectors into or from E.C.U., take care not to damage pin terminals (bend 4. or break.).

Make sure that there are not any bends or breaks on E.C.U. pin terminal, when connecting pin connectors. .

EF \& EC-60-A
TROUBLE DIAGNOSES
Diagnostic Procedure (Cont'd)
.When measuring E.C.U. controlied components supply voltage with a circuit tester, separate one tester probe from the other.
the two tester probes accidentally make contact with each other during measurement, the circuit will be shorted, resulting in damage to the control unit power transistor.

SEF144\#

Basic Inspection

1

BEFORE STARTING

1. Check service records for any recent repairs that may indicate a refated problem, or the curfent need for scheduled maintenance.
2. Open engine hood and check the following:

- Harness connectors for proper connections
- Vacuum hoses for splits, kinks, and proper connections
- Wiring for proper connections. pinches, and cets

2
CONNECT CONSULT TO THE VEHICLE
Connect "CONSULT" to the diagnostic connector and select "ENGINE" from the menu. (Peter to page EF \& EC-54.)

CAECK IGNITION TIAING.
Warm up engine sufficiently and check ignition timing at idle using timing light. (Reter to page E \& \& C-35.) lgnition timing:
$15^{\circ} \pm 2^{6}$ B.T.D.C.

(Go to on next page.)

Basic Inspection (Cont'd)

SEF3T2F

CHECK IDLE ADN. SCREW INITIAL SET RPM.

1. Select "A.A.C. VALVE ADJ" in "WORK SUPPORT" mode.
2. When touching "START". does engine rpm falio to:

When disconnecting A.A.C. valve harness connector, does engine rpm fall to;

SEFF47!

CHECK THROTTLE SENSOR IDLE POSTION.

1. Perform "THROTTLE SEN. ADJ." in "WORK SUPPORT" mode.
2. Check that output voltage of throttle sensor is 0.4 to 0.5 V . (Throtile valve fully closes.) and "IDLE POSITION" stays "ON".
OR.

Measure output voltage of throttle sensor tsing voltmeter, and check that it is 0.4 to 0.5 V .
(Throtte value fulty closed.)

(Go to (1) on next page.)

Adjust engine rpm by turning idle adjusting screw

1. Adjust output voltage by rotating throttle sensor body.
2. Disconnect throttle sensor harness con* nector for a few seconds and then reconnect it.
3. Confirm that " ${ }^{\text {DE }} \mathrm{E}$ POSITION" stays ' ${ }^{\circ} \mathrm{ON}$ ".

Basic Inspection (Cont'd)

SEFF 1491

SEF1511

O

CHECK SWITCH INPUT SIGNAL.

Select the following switches in "DATA MONITOR" mode,
a) Start signal,
b) Idle position.
c) Air conditioner signal,
d) Neutral (Parking) switch, and check the switches' ONOFF operation.

Remove E.C.U. from front floor panel and check the above switcfes' ON-OFF operation uslng volmeter at each E.C.U. tefminal.

Switch	Condition	Voltage (V)
Start signal	$\begin{aligned} & \text { IGN } \\ & \text { ON } \end{aligned} \begin{aligned} & \text { IGN } \\ & \text { START } \end{aligned}$	$\begin{aligned} & 0 \rightarrow \text { Battery } \\ & \text { voltage } \end{aligned}$
laf) position	-	-
A/C signa!	$\begin{aligned} & A / C \rightarrow A / C \\ & O F F \rightarrow O N \\ & \text { (Engine Funning) } \end{aligned}$	Battery waltage $\rightarrow 0.5-0.7$
Neutral (Patking) switch	Shift lever is "N" or sp" posítion \rightarrow Except "N" and "p"	$0 \rightarrow 8.0 \cdot 9.0$

READ SELF-DIAGNOSTIC RESULTS.

1. Pertorm "'SELF-DIAG RESULTS" mode.
2. Read out self-diagnostic resufts.
3. Is a falure detected?

On

1. Set 'Self-diagnostic results mode" in Mode II. (Reter to page EF \& EC-49.)
2. Count the number of check engine light flashes and read out the codes.
3. Are the codes being output?

Repair or replace the malfunctioning switch or
its circuiz.
N.G. circuiz. tion procedure.

SEf 3741

Diagnostic Procedure 1 - High Idling after Warm-up

1

CHECK AR REGULATOR.

When pinching the air regulator hose. does the engine speed drop?

Yes

CHECK INTAKE AR EEAK.

1. Select "SELF-LEAPNING CONT" in "ACTIVE TEST" mode.
2. Clear the selt-iearning control coefficient by touching "CLEAR".
3. Does the engine speed drop? OR

4. Disconnect exhaust gas sersor harness cofnectors.
5. Atter racing engine at 1,500 rpm under no-load for about 30 seconds, does the engine speed drop?

CHECK THROTTLE LINKAGE.

1. Check that throttle linkage moves smoothly.
2. Confirm that throttle valve both fully opens and fully closes.

Check ail regulator and circuit.

Discover air leak location and repair.

SEF1577

SEF156:

Diagnostic Procedure 2 - Hunting 1
CHECK EXHAUST GAS SENSOR.
When disconnecting exhaust gas sensor hamess connector, is the hunting fixed?

$\xrightarrow{\text { Yes }} \xrightarrow{\text { Check exhaust gas sen- }}$| sor(s). (See page $E F \&$ |
| :--- |
| EC-128.) |

2	No
2	

1. Perform 'POWEA BALANCE' in "ACTIVE TEST" mode.
2. Is there any cylinder which does not produce a momentary engine speed drop?

- OR

When disconnecting each ignition coil hamess connector one at a time, is there any cylinder which does not produce a momentary engine speed drop?

CHECK SPARK PLUGS.
Remove the spark plugs and check for fouling, etc.

Repair or replace spark plug(s).

TROUBLE DIAGNOSES

Diagnostic Procedure 2 - Hunting (Cont'd)

TROUBLE DIAGNOSES

SEF 1571

Diagnostic Procedure 3 - Unstable Idle 11

CHECK E.G.R. CONTROL VALVE.
Check E.G.R. control valve for sticking
Repair or replace.

strin:

TROUBLE DIAGNOSES

Diagnostic Procedure 3 - Unstable Idle (Cont'd)

Diagnostic Procedure 3 - Unstable Idle (Cont'd)

SEF160t

Right side

CHECK EXHAUST GAS SENSOR.

See 'M/R F/C MNT fright and left sides)" in "Data monitor" mode.
2. Maintaining engine at 2,000 rpfn under no-load (engine is warmed ap sufficiently. , check that the monitor fluctuates between "LEAN" and "RICH" more than 5 times during 10 seconds.
$\mathrm{FiCH} \rightarrow$ LEAN $\rightarrow \mathrm{RICH} \rightarrow$
1 time 2 times LEAN \rightarrow RICH.
f. Set "Exhaust gas sensor monitor" in the seli-fiagnostic Mode II. (See page EF \& EC49.)
2. Maintaining engine at 2,000 tpm under no-load, check to make sure that check engine light goes $O N$ and OFF more than 5 times furing 10 seconds.

CHECK FOR INTAKE AIR LEAK.
When pinching blow-by hose flowering and repair.
 the blow-by aif supply), does the engine speed rise of the engine become more stable?

Diagnostic Procedure 3 - Unstable Idle (Cont'd)

I

S S F380和

3

Diagnostic Procedure 4 - Hard to Start or

 Impossible to Start when the Engine is Cold 11 any pressure on the fuel teed hose?

CHECK AIR REGULATOR AND A.A.C. VAlVE.
When pressing acceleratof pedal fully. can you start the engine.

Yes \quad| Check A.A.C. valve, air |
| :--- |
| regulator and circuits. |
| (See pages EF \& EC-156, |
| 154.$)$ |

\square
CHECK INJECTOR.

1. Remove crank angle sensor from engine. (Harness connector should remain connected.)
2. Turnignition switch ON. (Do not start engine.)
3. When rotating crank angle sensor shaft, does each injector make an operating sound?
the ignition coil assembly.
4. Place end of spark plug against a sultable ground and crank engine.
5. Check for spark.

TROUBLE DIAGNOSES

Diagnostic Procedure 4 - Hard to Start or Impossible to Start when the Engine is

6

Remove the spark plugs and check for fouling, etc.

TRY A KNOWN GOOD E.C.U.

INSPECTION END

SEF3831

Diagnostic Procedure 5 - Hard to Start or Impossible to Start when the Engine is Hot

CHECK FUZL PRESSURE.

1. Pinch fuel feed hose with fingers
2. When cranking the engine, is there any pressure on the fuel feed hose?

Check fuel pump and circuit. (See page EF \& EC. 150.)

Check fuel properties.
Select "PRVR CONT SOL
VALVE" in "ACTIVE TEST" mode.
2. Atter touching "ON", can you start the engine?

OR
A

1. Disconnect fuel pressure reg-
utator vacuum hose and plug hose.
2. Can you start engine?

3
CHECK INJECTOR.

1. Remove crank angle sensor from engine. (Harmess connector should remain connected.)
2. Turn ignition swich ON. (Do not start engine.)
3. When sotating crank angle sensor shat, does each injector make an operating sound?

CHECK IGNITION SPARK,

1. Disconnect ignltion coil assembly from collector.
2. Connect a known good spark plug to N.G. Check ignition coil, power transistor unit and circuits. (See page EF \& EC-118.)
the ignition coil assembly.
3. Place end of spark plug against a suitable ground and crank engine.
4. Check for spark.

(Go to (a) on next page.)

TROUBLE DIAGNOSES

Diagnostic Procedure 5 - Hard to Start or Impossible to Start when the Engine is Hot (Cont'd)

CHECK E.C.U. HARNESS CONNECTOR. N.G. Repair or feplace. Check the E.C.U. pin terminals tor damage or poor connection of E.C.J. harness connector.

TRY A KNOWN GOOD E.C.U.

INSPECTION END

1

SEF3BOA

\$EF3821

Diagnostic Procedure 6 - Hard to Start or Impossible to Start under Normal Conditions 1

CHECK INJECTOR FOR LEAKAGE. When pressing accelerator pedal tully. can you start the engine.

CHECK INJECTOR.

1. Remove crank angle sensor from engine. (Harness connector should

Check injectors and circuits. remain connected.)
2. Turn ignition switch ON. (Do not staft engine.)
3. When rotating crank angle sensor shaft, does each injector make an operating sound?

CHECK IGNITION SPARK.

1. Disconnect ignition coll assembly from collector.
2. Connect a known good spark plag to the ignition coil assembly.
3. place end of spark plug against a suitable ground and crank engine.
4. Check for spark.

(Go to (a) on next page.)

TROUBLE DIAGNOSES

Diagnostic Procedure 6 - Hard to Start or Impossible to Start under Normal

CHECK E.G.R. CONTROL VALVE.
Check E.G.R. control valve for sticking.

SETVg

Diagnostic Procedure 7 - Hesitation when the Engine is Hot

Hi

VALVE" in "ACTIVE सEST" mode.
2. After touching ' ON^{\prime} ", perform cruise test.
3. Does the hesitation disappear?
(D) OR Disconnect fuel pressure reg. ulator vacuum hose and plug hose.
2. Perform cruise test.
3. Does the hesitation disappear?

2. Perform cruise test.
3. Does the hesitation disappear?

INSPECTION END

Diagnostic Procedure 8 - Hesitation when the Engine is Cold

는

Right side

SEFF.1.5

SEF160t

Diagnostic Procedure 9 - Hesitation under Normal Conditions

1

left sides)" in "DATA MONTTOR" mode
2. Maintaining engine at 2,000 rpm under no-load (with engine warmed up sufficiently.), check to make sure that the monitor fuctuates between "LEAK" and "RICH" more than 5 times during 10 sec onds.
$\mathrm{FICH} \rightarrow$ LEAN \rightarrow RICH \rightarrow
1 time 2 times
LEAN \rightarrow RICH
OR

Set "Exhaust gas sensor monitor" in the self-diagnostic Mode II. (See page EF \& EC49.)
2. Maintaining engine at 2,000 rpm under noload, theck that check engine light goes ON and OFF mere than 5 times during 10 seconds.

CHECK CANISTER PURGE.

1. Disconnect canister purge line hose and plug hose.
2. Perform cruise test.
3. Does the hesitation disappear?

Diagnostic Procedure 9 - Hesitation under Normal Conditions (Cont'd)

SEF386t

Diagnostic Procedure 10 - Engine Stalls when Turning

11
CHECK FUEL LEVEL.
Check to see that there is enough fuel in tank.

PERFORM POWER BALANGE TEST.

1. Periorm "POWER BALANCE" in "ACTIVE TEST" mode.
2. Is there any cylinder which does not produce a momentary engine speed drop?

When disconnecting each injector harness connector one at a time, is there any cylinder which does not produce a momentary engine speed drop?

3

CHECK INJECTOR

1. Remove crank angle sensor from engine. (Harness connector shozld remain connected.)
2. Tusn ignition switch ON (Do not start engine.)
3. When rotating crank angle sensor shaft. does each injector make an operating sound?

4

CHECK IGNITION SPARK.

1. Disconnect ignition coil assembly from collector.
2. Connect a known good spark plug to

the ignition coil assembly.
3. Place end of spark plug against a suitable ground and crank engine.
4. Check for spafk.

(Go to (i) on next page.)

Dlagnostic Procedure 10 - Engine Stalls when Turning (Cont'd)

SEF383:

Diagnostic Procedure 11 - Engine Stalls when the Engine is Hot 11

CHECK FUEL VAPOR.

Yes, Check fuel propertes.

Select "PAVR CONT SOL
VALVE' in "ACTIVE TEST" mode.
2. After touching 'ON', perform cruse test.
3. Does the engine stall disappear?

OR

1. Disconnect fuef pressure regulator vacuum hose and plug hose.
2. Perform cruise test.
3. Does the engine stall disappear?

PERFORM POWER BALANCE TEST.

1. Perform 'POWER BALANCE" in "ACTIVE TEST" mode Is there any cylinder which does not prodzce a momentary engine speed trop?

OR

When disconnecting each injec-
tor harness connector one at a time, is there any cylinder which does not produce a momentary engite speed drop?
3 |res
CHECK INJECTOR.

1. Remove crank angle sensor trom engine. (Harness connector should remain connected.)
2. Turn ignition switch ON. (Do not start engine.)
3. When rotating crank angle sensor shath, does each injector make an operating sound?

(Go to (a) on next page.)

Diagnostic Procedure 11 - Engine Stalls when the Engine is Hot (Cont'd)

1. Disconnect ignition coll assembly from collector.
2. Connect a known good spafk plug to
 the ignition coil assembly.
3. Place end of spark plug against a suitable ground and crank engine.
4. Check for spark.

5

7

1. Release fuel pressure to zero.
(Refer to page EF \& EC-185.)
. Install fuel pressure gauge and check fuel pressure.

CHECK E.C.U. POWER SUPPLY ANO GROUND CIRCUIT.

Repair or replace.
Refer to page EF \& EC-104.

Diagnostic Procedure 12 - Engine Stalls when the Engine is Cold (Cont'd)

I

SEF 146

SEF 157 ?

Diagnostic Procedure 13 - Engine Stalls when Stepping on the Accelerator Momentarily

 ICHECK A.A.C. VALVE.

Select "A.A.C. VALVE
OPENNNG" in "ACTVE TEST" mode.
2. When touching "Qu" and "Od", does the engine speed change according to the percent of A.A.C. valve opening?

When disconnecting A.A.C.
valve harness connector, does the engine speed drop?

Perform 'POWER BALANCE' in "ACTIVE TEST" mode. 2 . Is there any cylinder which does not produce a momentary engine speed drop?

OR \qquad
When disconnecting each infector harness connector one at a time, is there any cylinder which does not produce a momentary engine speed drop?

CHECK INJECTOR.

1. Remove crank angle sensor from engine. (Harness connector should remain connected.)
2. Turn ignition swisch ON. (Do not start engine.)
3. When rotating crank angle sensof shaft, does each injector make an operating sound?

(Go to (A) on next page.)
 Momentarily (Cont'd)

SEFT1571

CHECK FUEL PRESSURE.

1. Perform "FUEL PRESSURE

RELEASE' in 'WORK SUPPORT' mode in order to release fuel pressure to zero
2. Install fuel pressure gauge and check fuel pressure
Al idie approx. 255 kPa (2.55 bar, $\left.2.6 \mathrm{~kg} / \mathrm{cm}^{2}, 37 \mathrm{psi}\right)$ The moment throttle valve is fully open:
approx. $30-4 \mathrm{kPa}(3.04 \mathrm{bar}, 3.1$ $\mathrm{kg} / \mathrm{cm}^{2}, 44 \mathrm{psi}$)

OR

1. Release fitel pressure to zero
(Heter to page EF \& EC-185.)
2. Install fued pressure gauge and check fuel pressure

CHECK EXHAUST GAS SENSOR.

See 'M/A F/C MNT (right and left sides)" in "DATA MONITOR" mode.
2. Maintaining engine at 2,000 rpm under mo-load (with engine warmed up sufficiently.), check to make sure that the monitor fluctuates between "LEAN' and "RICH" more than 5 times daring to seconds.
$\underset{1 \text { time }}{\mathrm{RICH} \rightarrow \mathrm{LEAN} \rightarrow \mathrm{HICH} \rightarrow} \underset{2 \text { times }}{=}$
LEAN \rightarrow RICH.......

1. Set "Exhaust gas sensor monitor' in the seff-diagnostic Mode II. \{See page EF \& EC: 49.)
2. Maintaining engine at 2,000 spm under no-load, check that check engine tight goes ON and OFF more than 5 times during 10 seconds.

(Go to (c) on next page.)

Dlagnostic Procedure 14 - Engine Stalls after Decelerating (Cont'd)

SEFF1571

Diagnostic Procedure 15 - Engine Stalls when Accelerating or Cruising

11

PERFORM POWER BALANCE TEST.

1. Pertorm "POWER BAIANCE" in "ACTVE TEST" mode.
2. Is there any cylinder which does not produce a momentary engine speed drop? OR

When disconnecting each injector hamess comector one at a time, is there any cylinder which does not produce a momentary engine speed drop?

CHECK IMJECTOR.
t. Remove crank angle sensor from engine (Harness connector should remain connected.)
2. Turn ignition switch ON. (Do not start engine.)
3. When rotating crank angle senser shaft, does each injector make an operating sound?

CHECK IGNITION SPARK.

(Disconnect ignition coli assembly from collector.
2. Connect a known good spark plug to the ignition coll assembly.
3. Place end of spark plug against a sultable ground and crank engine.
4. Check for spark.

(Go to (A) of next page.)

Diagnostic Procedure 15 - Engine Stalis when Accelerating or Cruising (Cont'd)

gine speed rise?

(Go to (B) on next page.)

TROUBLE DIAGNOSES

Diagnostic Procedure 15 - Engine Stalis when Accelerating or Cruising (Cont'd)

SEF3891

Diagnostic Procedure 16 - Engine Stalls when the Electrical Load is Heavy
 II

CHECK BATTERY AND ALTERNATOR.
Check battery and alternatof condition.

(Refer to EL. section.)

PERFORM POWER BALANCE TEST.
(E) Perform "POWEA BALANCE"
if "ACTIVE TEST" mode.

2. Is there any cylinder which does not produce a momentary engine speed crop?

When disconnecting each injector harness conthector one at a time, is there any cylinder which does not produce a momentary engine speed drop?

TROUBLE DIAGNOSES

Diagnostic Procedure 16 - Engine Stalls when the Electrical Load is Heavy
 Check the E.C.U. pin terminals for dernage or poor connection of E.C.U. har* ness connector.

CHECK E.C.U. POWER SUPPLY AND GROUND CIRCUIT.
Refer to page EF \& EC-104.

TRY A KNOWN GOOD E.C.U.

SEF39B

Diagnostic Procedure 18 - Detonation

11
Check Fon intake Air LEAK,
When pinching blow-by hose (lowering the blow-by air supply), does the efgine rpm rise or the engine become more stabte?

CHECK E.G.R. OPERATION.
f. Apply vacuum directly to the E.G.F. valve using a handy vacuum pump.

2. Check to see that the engine runs rough or dies.

CHECK E.G.R. CONTROL SOLENOID VALVE. circuit.

TROUBLE DIAGNOSES

Dlagnostic Procedure 18 - Detonation (Cont'd)

5

Check the following vacuum hoses for clogjing, cracks and poor connection.
a) Vacuum hose between E.G.R. control valve and E.G.R. control solenoid valve.
b) Vacuum hose between E.G.R. control solenoid valve and throttle chamber port.
c) Vacuum hose between E.G.R. control solenoid valve and air duct.

CHECK FOR OLL LEAK TO COMBES. TION CHAMBER.

Remove spark plugs and check tor fouling with oil.

SEF16か
I

Diagnostic Procedure 19 - Surge
11
CHECK EXHAUST GAS SENSOR.

1. See "M/R F/G MNT (right and \quad| Replace exhaust gas sen- |
| :--- |
| sor(s). |

left sides)" in "DATA
MONTTOR" mode.
2. Maintaining englne at 2,000
rpm under no-foad (with en-
gine warmed up sufficiently.),
check to make sufe that the monitor tluctuates between
"LEAN" and "RICH" more than 5 times during 10 seconds

LEAN \rightarrow PACH.

1. Set "Exhaust gas sensor monitor" in the self-diagnostic Mode li. (See page EF \& EC49.)
2. Maintainirg engine at 2,000 fom under no-foad, check that check engine light goes ON and OFF more than 5 times during 10 seconds.

CHECK E.G.R. CONTHOL VALVE.
Check E.G.R. control valve for sticking.

INSPECTION END

Dlagnostic Procedure 21 - Backfire through the

 Exhaust
1

Diagnostic Procedure 22

MAIN POWER SUPPLYY AND GROUND CIRCUIT

Harness layout

Diagnostic Procedure 22 (Cont'd)

\square

SEF433

Diagnostic Procedure 23

CRANK ANGLE SENSOR (Code No. 11)

Harness layout

SEF584]

GHECK POWER SUPPEY.

1) Turn ignition switch "ON".
2) Check voltage between terminal(\bar{b}) and ground.
Voltage: Battery voltage

CHECK INPUT SIGNAL 1) Start engine.

2) Read crank angle sensor signals in "DATA MONITOR' mode with CONSULT

	A/T*	M/T
Nonturbo	$\begin{gathered} 770.50 \\ \text { rom } \end{gathered}$	$\begin{gathered} 700 \pm 50 \\ \text { זрп } \end{gathered}$
Turbo	750 ± 50 грпт	

*: in " N " position
2) Check that pulse signás exist in E.C.U. terminals (41), (51) and (42), (52) with logic probe.

Pulse signal should exist.
(4).61): 120° signal (4) (52): 1^{*} signal
O.K.

B
Check the following items.

1) E.C.C.S. relay

Reter to "Electrical Compo-
nents inspection".
(See page EF \& EC-184.)
2) " G " fusible link
3) Harmess continuity between
E.C.C.S. retay and battery 4
terminal
Continulty should exist.
4) Harness continulity between
E.C.C.S. relay and crank an-
gie sensor terminal (\bar{b})
Continuity shouid exist.

D

CHECK HARNESS CONTINUTTY BETWEEN E.C.U. AND CRANK ANGLE SENSOR.

1) Stop engine.
2) Disconnect crank angle sensor harfess connector.
3) Disconnect E.C.W, hamess connector.
4) Check harness contintity be.. tween E.C.U. terminals (41). (5) and terminal σ), E.C.U. terminals (43), 63 and terminal Continully should exist.
If $N . G .$, repair thafness or connectors.

TROUBLE DIAGNOSES

Diagnostic Procedure 23 (Cont'd)

$\xrightarrow{\text { N.G. Repair harness or connectors. }}$
 perform SEtF-DIAGNOSTIC RESLLTS (Mode II) again.

1) Perform E.C.U. input/output signal inspection test.
2) If N.G., recheck the E.C.U. pin terminals for damage. Check the connection at the E.C.U. harness connector.

Diagnostic Procedure 24

AIR FLOW METER (Code No. 12)

Harness layout

TROUBLE DIAGNOSES

Diagnostic Procedure 24 (Cont'd)

CHECK INPUT SIGNAL.

1) Start engine and warm it up sufficiently.

2) Read air flow meter signal in "DATA
MONITOR" mode with CONSUET

Voltage: 0.0-1.5V OR

2) Check voltage between terminals(b) and ground at idle under no-load
Voltage: $0.8 \cdot 1.5 \mathrm{~V}$

CHECK GROUND CERCUIT

1) Stop engine
2) Disconnect air flow meter harness connector.
3) Check harness continuity between terminal (c) and ground. Conitinuily shoufd exisi.

CHECK HARNESS CONTINUITY BETWEEN ARR FLOW METER AND E.C.U.

1) Stop ongine.
2) Disconnect air flow meter harness comnector.
3) Disconnect E.C.U. harness connector
4) Check hamess continuity between E.C.U. terminal and terminal (\underline{b}).
Continuily should exisl.
If N.G., repair harness or connectors.

CHECK COMPONENT

(Air llow meter).
Refer to "Electrical Components inspection".
(See page EF \& EC-178.)
$\xrightarrow{\text { N.G. Repair harness of connectors. }}$

TROUBLE DIAGNOSES

Diagnostic Procedure 24 (Cont'd)

NOTE

Diagnostic Procedure 25
ENGINE TEMPERATURE SENSOR (Code No. 13)

Harness layout

Diagnostic Procedure 25 (Cont'd)

Diagnostic Procedure 26

VEHICLE SPEED SENSOR

Harness layout

Diagnostic Procedure 26 (Cont'd)

B

CHECK HAANESS CONTINEITY BETWEEN COMBINATION METER AND E.C.U.

1) Pemove combination meter from instrument pane:
2) Disconnect combination meter harness connector (16)
3) Check harness continulfy bew tween E.C.U. terminal and terminal (a).
Continuly should exist.

Diagnostic Procedure 27
IGNITION SIGNAL (Code No. 21)

Harness layout

TROUBLE DIAGNOSES

Diagnostic Procedure 27 (Cont'd)

EF \& EC-119

TROUBLE DIAGNOSES

Diagnostic Procedure 27 (Cont'd)

NOTE

TROUBLE DIAGNOSES

Diagnostic Procedure 28

ENGINE CONTROL UNIT

NOTE

Diagnostic Procedure 29

E.G.R. FUNCTION

Diagnostic Procedure 29 (Cont'd)

CHECK E.G.R. CONTROL VALVE OPERATION.

Make sure that E.G.R. controk valve lifts up when applying vacuum

B

CHECK VACUUM SOURCE TO E.G.R. CONTROL VALVE.

1) Disconnect vacuum hose connected to E.G.R. control solenold valve.
2) Make sure vacuum exists when racing engine.

CHECK VACUUM HOSE
Check vacuum hose for clogging, cracks or improper connections.

CHECK E.C.U. OUTPUT SIGNAL. 1) Check voltage between E.C.U terminal(1) and ground under the following conditions

Engine condition	Voltage
Ifile	0.7-0.8V
Racing iLess than approx. $3,000 \mathrm{pm}$	Battery vottage

O.K.

CHECK POWER SOURCE TO E.G.R. CONTROL SOLENOID VALVE.

1) Stop engine.
2) Turn ignition switch " ON ".
3) Check voltage between terminal (b) and ground. Voltage: Battery vohage
CHECK GROUND CIRCUIT.
4) Tum ignition switch "OFF".
5) Disconnect E.C.D. harness cominector.
6) Disconnect E.G.R. control solenoid valve harness connector.
7) Check fesistance between E.C.U. terminal (102) and terminal (b).
Resistence:
Approximalely 0Ω
If N.G. repair or feplace harness.

Diagnostic Procedure 29 (Cont'd)

SEFFS8:

Driving mode

(1) Start engine and warm it up sufficiently.
(2) Turn off ignition switch and keep it olf until ted L.E.D. goes off.
(3) Start engine and make sure that air conditioner twitch and rear defogger are turned "OFF" during driving test.
(4) Keap engine ruming for at least 3 minutes.
(5) Shift to suitable gear position and drive in "Test condition" for at least $2 t$ seconds.
(f) Decrease engine revolutiofs to fess than 2.000 pm .
(7) Repuet staps (5) through (6) as last 1 more time.

Diagnostic Procedure 30

EXHAUST GAS SENSOR

Harness layout

Diagnostic Procedure 30 (Cont'd)

Diagnostic Procedure 30 (Cont'd)

NOTE

Diagnostic Procedure 31

DETONATION SENSOR (Code No. 34)

Harness layout

Diagnostlc Procedure 31 (Conl'd)

Diagnostic Procedure 32

FUEL TEMPERATURE SENSOR (Code No. 42)

Harness layout

Diagnostic Procedure 32 (Cont'd)

Diagnostic Procedure 33
THROTTLE SENSOR (Code No. 43)

Diagnostic Procedure 33 (Cont'd)

SEF1471

Fiead throttle sensor out-
put voltage in "WORK SUPPORT" mode with CONSULT.
Throltle valve lully closed;

$$
0.4-0.5 \mathrm{~V}
$$

Throttie value fully open:
Approx. 4.0V

$$
O R
$$

Make sure that voltage
between E.C.U. terminal
39 and ground changes
when accelerator pedal
is depressed.
Voltage:
Throttle valve fully cinsed:
0.4 - 0.5V

Throttle valve fully open:

Approx. 4.0V
o.k.

B

N.G.

CAECK HARNESS CONTINUITY BETWEEN THPOTTLE SENSOR AND E.C.U.

1) Turn ignition switch "OFF'.
2) Disconnect throttle sensor harness comector.
3) Disconnect E.C.U. harness cornector.
4) Check harness contifuity between E.C.L. terminal 48 and terminal (7)
Continuity should exist.
If N.G., repair harness or connectors.
N.G.

ADJUST THROTTLE SENSOR INITHAL POSITION.
 (See page EF \& EC-181.)

CHECK HARNESS CON WNUITY BETWEEN THROTTLE SENSOR AND E.C.U.

1) Turra Ignition switch "OFF".
2) Disconnect throtte sensor harness connector.
3) Disconnect E.C.U. hamess connector.
4) Check harness continuity between E.C.U. terminal (38) and terminal (e).
Continuity should exist.
It N.G., repair harness of connectors.

CHECK COMPONENT
(Throttle sensor).
Fefer to "Electrical Components Inspection".
(See page EF \& EC-181.)

Diagnostic Procedure 33 (Cont'd)

Erase the SELF-DIAGNOSTIC RESULTS memory.

Pertofm driving lest and then perform SELF-DIAGNOSTIC RESUITS (Mode II) again

1) Perform E.C.U. input/output signal inspection test.
2) If N.G., recheck the E.C.U. pin terminals damage or the connection of E.C.U. harness con+ nector.

Diagnostic Procedure 34

INJECTOR CIRCUIT

EF \& EC-140

Diagnostic Procedure 34 (Cont'd)

INSPECTION END

Diagnostic Procedure 35
THROTTLE VALVE SWITCH (Idle position)

TROUBLE DIAGNOSES

Diagnostic Procedure 35 (Cont'd)

CHECK COMPONENT
(throttle valve switch).
Refer to "Electrical Components Inspection'
(See page EF \& EC-183.)

Diagnostic Procedure 36
START SIGNAL

Harness layout

Dlagnostic Procedure 36 (Cont'd)

B

1) Turn ignition switch "ON".

2) Check start signal in "'DATA MONITOR" mode with CONSULT.

) Check voltage between E.C.U. terminal (4) and

Check the following items.

1) " G " fusible inik
2) " $7.5 \mathrm{~A}^{41}$ fuse
3) Igntaion switch
4) Harness continuity between E.C.U. and ignition switch Continulty shouid exist.
5) Hazness continuity between battery 4$)$ terminal and ignt* tion switch Continuity should exist.

Diagnostic Procedure 37

POWER STEERING OIL PRESSURE SWITCH

Harness layout

Dlagnostic Procedure 37 (Cont'd)

Diagnostic Procedure 38

NEUTRAL SWITCH \& A/T CONTROL UNIT (NEUTRAL SIGNAL) CIRCUIT

Harness layout

Diagnostic Procedure 38 (Cont'd)

Diagnostic Procedure 39
FUEL PUMP

Harness layout

SEF3661

EF \& EC-150

Diagnostic Procedure 39 (Cont'd)

| INSPECTION STARTM |
| :--- | :--- | :--- | :--- |

Replace fuel pump control unit.

Diagnostic Procedure 39 (Cont'd)

Diagnostic Procedure 40
AIR REGULATOR

Harness layout

SEF592:
D

CHECK POWEA SUPPEY.
i) Start engine.
2) Check voltage between aif regulator terminal (c) and ground
Voliage: Eattery voltage
B
$\xrightarrow{\text { N.G. }}$ Check the following isems.

1) Harness cont/nuity between

- air regulator and fuel pump relay
- tuel pump retay and battery (f) termina
- fuel pump relay and E.C.U. terminal (18)
Continuty should exist.

2) "G" fusible link

D

CHECK GROUND CIRCUIT. Check harness continuity between air zegulator teminal (b) and ground.
Continuity should exist.

Diagnostic Procedure 41

A.A.C. VALVE

Harness layout

Dlagnostic Procedure 41 (Cont'd)

SEF4981

SEF 162 :

Diagnostic Procedure 42

F.I.C.D. SOLENOID VALVE

Harness layout

F.I.C.D. solenoid valve harness connector is located near A.A.C. valve harness connector.

Diagnostic Procedure 42 (Cont'd)

Diagnostic Procedure 43

A.I.V. CONTROL SOLENOID VALVE

Harness layout

SEF366:

EF \& EC-160

TROUBLE DIAGNOSES

Diagnostic Procedure 43 (Cont'd)

B

D

E
CHECK POWER SUPPLY.

1) Turn ignition switch "ON".
2) Check voltage between A.I.V control solenoid valve ferminail (o) and ground
Voltage: Battery voltage

CHECK HARNESS CONTINUITY BETWEEN AID. CONTROL SO-

Repair or replace harness or connectors. LENOID VALVE AND E.C.U. Check harness contlouly between A.I.V. control solenoid valve terminal (D) and E.C.U. termint(8).
Continuity should exist.

CHECK COMPONENT
N.G. (A,I.V. control solenoid valve).

Repair or replace A.I.V. control solenoid valve.

Diagnostic Procedure 44

P.R.V.R. CONTROL SOLENOID VALVE

Dlagnostic Procedure 44 (Cont'd)

Diagnostic Procedure 45

v.t.c. SOLENOID VALVE

Harness layout

SEF36G:

Diagnostic Procedure 45 (Cont'd)

Diagnostic Procedure 46
RADIATOR FAN CONTROL

Harness layout

For radiator fan motor harness connector, see "HARNESS LAYOUT" in EL section.

EF \& EC-166

Diagnostic Procedure 46 (Cont'd)

TROUBLE DIAGNOSES

Diagnostic Procedure 46 (Cont'd)

NOTE

Diagnostic Procedure 47

WASTEGATE VALVE CONTROL SOLENOID VALVE

Harness layout

TROUBLE DIAGNOSES

Dlagnostic Procedure 47 (Cont'd)

Electrical Components Inspection

E.C.U. INPUT/OUTPUT SIGNAL INSPECTION

1. E.C.U. is located behind front passenger side floor board. For this inspection, remove the front passenger side floor board.
2. Remove E.C.U. harness protector.
3. Perform all voltage measurements with the connectors connected.
Extend tester probe as shown to perform tests easily.

Electrical Components Inspection (Cont'd)

E.C.U. inspection table

TER- MINAL NO.	ITEM	CONDITION	*DATA
1 2 3	Ignition signal	Engine is running. ldie speed	Approx. 0.1 V
$\begin{aligned} & 11 \\ & 12 \\ & 13 \end{aligned}$		Engine is running. Engine speed is 2,000 rpm.	Approx. 0.14 V
4	A.A.C. valve	Engine is running. Racing condition	Voltage briefly decreases from battery voltage (11-i4V).
6	Padiator fan sub-relay (Turbo model)	Engine is running. -radiator fan is not operating.	BATTERY VOLTAGE $(11-14 \mathrm{~V})$
		Engine is running.	$0.1 \times 0.3 \mathrm{~V}$
7	Tachometer	Engine is rurning. lde speed	Approx. 0.7 V
		Engine is runntrg. Lengine speed is 2,000 rpm.	Approx. 1.2 V
8	A.I.V. control solenoid valve	Engine is running. Lole speed	Approx. OV
		Engine is running.	BATTERY VOLTAGE $(11-14 V)$
9	Air conditioner relay	Engine is rumning. Air conditioner switch "OfF"	BATTERY VOLTAGE $(11-14 V)$
		Engine is running.	Approx. OV
16	E.C.U. power source (Self-shutoff)	Engine is rumning. Idie speed	0.8-1.0V
		Engme is not funning. For a few seconds after turning ignition switch "OFF"	BATTERY VOLTAGE $(11-14 V)$

*Dala are reference values.

TEAMinas NO.	ITEM	CONDITION	- DATA
18	Fuel pump relay	lgntion switch "ON" For 5 seconds after turning ignition switch "ON" Engine is ruming.	0.7-0.9V
		gnition switch "ON" In 5 seconds atter turning ignition switch "ON"	battery voltage $(11 \cdot 14 V)$
19	Radiator fan reaby	Engine is running.	BATTERY VOLTAGE $(11+14 V)$
		Engine is runining:	$0.1-0.3 \mathrm{~V}$
23	Detonation sensor	Engine is running. Lole speed	Approx. 2.5 V
25	Wastegate valve control solenoid valves (Turbo mode)		BATTERY VOLTAGE $(11-14 V)$
		Engine is racing. Engine speed is up to $2,000 \mathrm{rpm}$	Approx. 0.2 V
27	Air flow meter	Engine is runming (Warm-up condition) Idie speed	$0.8+1.5 \mathrm{~V}$
		Engine is running. (Warm-up condition) Engine speed is $2,000 \mathrm{rpm}$.	$1.0 \times 1.6 \mathrm{~V}$
28	Engine temperature sensor	Engine is running.	$0-5.0 \mathrm{~V}$ Ottput voitage varies with engine temperature.
29	Right side exhaust gas sensor	Erigine is running.	
55	Left side exhaust gas sensor	-After warming up sufficiently and engine speed is $2,009 \mathrm{rpm}$.	Approx.
33	F.I.C.D. solenoid valve	Engine is renning:	BATTERY VOLTAGE $(11-14 V)$
		Engine is runfing A/C compressor is operatiog.	0.7-0.8V

Electrical Components Inspection (Cont'd)
"Data are reference values.

TER MINAL NO.	ITEM	CONDITION	${ }^{\text {© DATA }}$
34	Power steering oil pressure switch	Engine is running. Steering wheal is in the "straight ahead" position.	8.0-9.0V
		Engine is running. Lsteering wheel is tumed.	Approx. OV
36	Fuel temperature sensor	Engine is rumuing	$0-5.0 \mathrm{~V}$ Output voltage varies with fuel temperatufe.
38	Throttle sensor	gration switch 'ON"	$0.4-4.0 \mathrm{~V}$ Output voltage varies with throttle valve opening angle.
$\begin{aligned} & 41 \\ & 51 \end{aligned}$	Crank angle sensor (Reference signal)	Englne is renring. Do not run engine at high speed under noload.	$1.2-1.4 \mathrm{~V}$ Output voltage varies slightly with engine speed.
$\begin{aligned} & 42 \\ & 52 \end{aligned}$	Cfank angle sensor (Position signal)	Engine is running. Do not run engine at high speed under noload.	$2.5-2.7 \mathrm{~V}$ Output voltage varies slightly with engine speed.
43	Start signal	[gnition switch "ON'	Approx. OV
		gnotion swith START]	BATTERY VOLTAGE $(11+14 V)$
44	Neutral switch (M/T model) A/T control anit (A / T modef)	Ignition switch "ON" Gear position is "Nettral" (M/T mode\#). Gear position is "N" or "P" (A/T model).	Approx. 0 V
		gnition switch orr Except the above conditions	$8.0 \cdot 9.0 \mathrm{~V}$
45	Ignition switch	Engine stopped	battery voltage $(11 \times 14 V)$
46	Air conditioner switch	Engine is running. Ais conditioner switch "OFF"	BATTERY VOLTAGE $(1 t-14 V)$
		Engne is running.	0.5-0.7V

Electrical Components Inspection (Cont'd)

TERMINAL NO.	ITEM	CONDITION	-DATA
48	Power source tor sensors	Enition switch "ON"	Approximately 5.0V
49	Battery source	Lengition swith ${ }^{\text {ON }}$	gattery voltage $(11-14 \mathrm{~V})$
54	Throttle valve switch (latle position)	gnition switch "ON" Accelerator pedal is filly released (engine running).	9.0-10.0V
		ghition switch "ON" Accelerator pedal is cepressed (engine running).	OV
57	Power source for throttle valve switch	lgnition switch "ON" Engine runting	BATTERY VOLTAGE $(11-14 V)$
59	Power supply	Engine running	battery vol fage $(11-14 V)$
$\begin{aligned} & 101 \\ & 103 \\ & 105 \\ & 110 \\ & 112 \\ & 114 \end{aligned}$	Injectors	gnitoon switch "OfFr's	BATTERY VOLTAGE $(11-14 V)$
102	EG.R. control solenoid valve		0.7-0.8V
		Emgine is funing (warm-up condition) Engine speed is $2,000 \mathrm{rpm}$.	battery voltage $(11-14 V)$
$\begin{gathered} 35 \\ 104 \end{gathered}$	Fuef pump voltage contro (35: Turbo model)	Engine stopped	battery voltage $(11-14 V)$
		Engine is ruming. (Warm-up condition)	Approx. OV
111	P.R.V.R. control solenoid valve	Stop and restart engine affer warming it up. ${ }^{W}$ Fuel temperature is above $75^{\circ} \mathrm{C}\left(167^{\circ} \mathrm{F}\right)$	$0-1.0 \mathrm{~V}$ (for 30 seconds after ignition switch is furned off.)
			BATTERY VOLTAGE (Atter 30 seconds)
		Stop and restart engine after warming it up. - ${ }_{\text {atel temperature is below } 75^{\circ} \mathrm{C}\left(167^{\circ} \mathrm{F}\right)}$	BATTERY VOLTAGE $(11-14 V)$

*Bata are reference values.

TEAMINAL NO.	ITEM	CONDITION	'DATA
113	Valve timing control solenoid valves	Engme is rumning. Idle speed	battery voltage $(1 \div-14 V)$
		Engine is runing.	$0.2-0.5 \mathrm{~V}$

E.C.U. HARNESS CONNECTOR TERMINAL LAYOUT

TROUBLE DIAGNOSES

Electrical Components Inspection (Cont'd) CRANK ANGLE SENSOR

1. Remove crank angle sensor from engine. (Crank angle sensor harness connector should remain connected.)
2. Turn ignition switch "ON".
3. Rotate crank angle sensor shaft sfowly by hand and check voltage between terminals (1), (2) and ground.

Terminal	Voltage
(2) $\left(120^{\circ}\right.$ signal)	voltage fluctuates between 5 V and OV.
(1) $\left(1^{\prime \prime}\right.$ signal $)$	

If N.G., replace crank angle sensor.
After this inspection, malfunction code No. 11 might be displayed though the crank angle sensor is functioning properly. In this case erase the stored memory.

AIR FLOW METER

1. Fold back air flow meter harness connector rubber as shown in the figure if the harness connector is connected.
2. Turn ignition switch " ON ".
3. Start engine and warm it up sufficiently.
4. Check voltage between terminal and ground.

Conditions	Voltage V
Ignition switch "ON' (Engine stoppea.)	Approximately 0.8
Idte (Engine is warm-up sufficiently.)	Approximately $0.8-1.5$

5. If N.G., remove air flow meter from air duct. Check hot wire for damage or dust.

ENGINE TEMPERATURE SENSOR

1. Disconnect engine temperature sensor harness connector.
2. Check resistance as shown in the figure.

Temperatare ${ }^{2} \mathrm{C}\left({ }^{\circ} \mathrm{FF}\right)$	
$20(68)$	Resistance $\mathrm{k} \Omega$
$50(122)$	$2.7-2.9$
$80(176)$	$0.68-1.00$

If N.G., replace engine temperature sensor.
EF \& EC-178

Electrical Components Inspection (Cont'd) IGNITION COIL

1. Disconnect ignition coil harness connector.
2. Check resistance as shown in the figure.

Terminal	Resistance
$(1)-(2)$	Approximately 0.7Ω

If $N . G$. , replace ignition coil.

POWER TRANSISTOR

1. Disconnect power transistor harness connector.
2. Check power transistor continuity between terminals as shown in the figure.

Terminal combination						Tester polarity	Continuity	Tester polarity	Con- tnuity
9 a	9	9	9 d	9 0	9 f	$\stackrel{\varphi}{\theta}$	No	$\begin{aligned} & \Theta \\ & \Phi \end{aligned}$	Yes
9 1	9 2	9 3	9 4	9	9 6	$\begin{aligned} & \oplus \\ & \ominus \end{aligned}$	Yes	θ	Yes
a 1	b	c	d	e	\dagger 6	(9)	Yes	Θ	No

If N.G., replace power transistor.

SEFT5AH

FUEL PUMP

1. Disconnect fuel pump harness connector.
2. Check resistance between terminals (a) and .

Resistance: Approximately 0.5Ω
If N.G., replace fuel pump.

VEHICLE SPEED SENSOR

1. Jack up rear wheels. Use stands to support vehicle.
2. Disconnect vehicle speed sensor harness connector.
3. Check continuity between terminals (a) and (b) while rotating rear wheef by hand.

Continuity should come and go.

If N.G., replace vehicle speed sensor.

Electrical Components Inspection (Cont'd) WASTEGATE VALVE CONTROL SOLENOID VALVE

Check air passage continuity.

Condition	Air passage continuity between ($)$ and ($)$)
12V direct curfent supply between terminals (a) and (b)	Yes
No supply	No

If N.G., replace solenoid valve.

E.G.R. CONTROL SOLENOID VALVE

A.I.V. CONTROL SOLENOID VALVE

P.R.V.R. CONTROL SOLENOID VALVE

Check air passage continuity.

Condition	Air passage continuity between (a) and (B)	Air passage continuity between (4 and (c)
12 V tirect current sup ply between terminals (1) and (2)	Yes	No
No supply	No	Yes

If N.G., replace solenoid valve.

E.G.R. CONTROL VALVE

Apply vacusm to E.G.R. vacuum port with a hand vacuum pump.
E.G.R. control valve spring should lift.

If N.G., replace E.G.R. control valve.

EXHAUST GAS SENSOR

Refer to "Diagnostic Procedure 30 ".
(See page EF \& EC-128.)

EXHAUST GAS SENSOR MEATER

Check resistance between terminals (c) and (C).
Resistance: 3-1,000
If N.G., replace exhaust gas sensor.

Electrical Components Inspection (Cont'd) THROTTLE SENSOR

1. Disconnect throttle sensor harness connector.
2. Make sure that resistance between terminals (b) and (c) changes when opening throttle valve manually.

Accelerator pedal conditions	Resistance $\mathrm{k} \Omega$
Completely released	Approximately 1
Partially released	$1+9$
Completely depressed	Approximately 9

If N.G., replace throttle sensor.

Adjustment

If throttle sensor is replaced or removed, it is necessary to install it in the proper position, by following the procedure as shown below:

1. Install throttle sensor body in throttle chamber. Do not tighten bolts.
2. Connect throttle sensor and idle switch harness connector.
3. Start engine and warm it up sufficiently.
4. Perform "THROTILE SEN ADJ" in "WORK SUPPORT" mode.

Measure output voltage of throttle sensor using voltmeter.
5. Adjust by rotating throttle sensor body so that output voltage is 0.4 to 0.5 V .
6. Tighten mounting bolts.
7. Disconnect throttle sensor harness connector for a few seconds and then reconnect it.

A.A.C. VALVE

- Check A.A.C. valve resistance.

Hesistance:

Approximately 10Ω

EF \& EC-181

Electrical Components Inspection (Cont'd)

- Check plunger for seizing or sticking.
- Check for broken spring.

AIR REGULATOR

- Check air regulator resistance.

Resistance:

Approximately 70-802

- Check air regulator for clogging.

DETONATION SENSOR

1. Disconnect detonation sensor sub-harness connector.
2. Check continuity between terminal (o) and ground.

Continulty should exist.

Electrical Components Inspection (Cont'd) inJector

1. Disconnect injector harness connector.
2. Check resistance between terminals as shown in the figure. Resistance: 10-14
If N.G., replace injector.

VALVE TIMING CONTROL SOLENOID VALVE

Check valve timing control solenoid valve for normal operation by supplying it with battery voltage between terminals © and (b)

If N.G., replace solenoid valve.

NEUTRAL SWITCH

Check continuity between terminals (o) and (b).

Conditions
Shift to Neutral
Shift to other position

If N.G., replace neutral switch.

INHIBITOR SWITCH

Check continuity between terminals (o) and (b), (f)

Conditions	Continuity between terminals (o) and ' B	Continuity between terminals (0) and ($)$
Shift to "P" position	Yes	No
Shift to " N " position	No	Yes
Shift to positions other than " P " and " N "	No	No

Electrical Components Inspection (Cont'd)

E.C.C.S. RELAY, FUEL PUMP RELAY, RADIATOR FAN RELAY AND IGNITION COIL RELAY

Check continuity between terminais (3) and (5).

Conditions	Contintity
12 V direct current supply between terminals (1)	Yes
and (2)	
No curfent supply	No

If N.G., replace relay.

POWER STEERING OIL PRESSURE SWITCH

1. Disconnect power steering oil pressure switch harness connector.
2. Check resistance between terminals.

Fesistance: Approximately 2-3』

FUEL TEMPERATURE SENSOR

1. Disconnect fuel temperature sensor hamess connector.
2. Check resistance between terminal and ground as shown in the figure.

Temperature ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	Resistance k Ω
$20(68)$	$2.1+2.9$
$50(122)$	$0.68-1.00$
$80(176)$	$0.30-0.33$

If N.G., replace fuel inhibitor switch.

Releasing Fuel Pressure

Before disconnecting fuel line, release fuel pressure from fuel line to eliminate danger.

Perform "FUEL PRESSURE RELEASE" in 'WORK SUPPORT' mode with CONSULT.

1. Remove fuel pump relay or disconnect fuel pump connector.
2. Start engine.
3. After engine stalls, crank it two or three times to release all tuel pressure.
4. Turn ignition switch off and reconnect fuel pump relay or fuel pump connector.

Fuei Pressure Check

a. When reconnecting fuel line, always use new clamps.
b. Make sure that clamp screw does not contact adjacent parts.
c. Use a torque driver to tighten clamps.
d. Use Pressure Gauge to check fuel pressure.
e. Do not perform fuel pressure check while fuel pressure regulator control system is operating; otherwise, fuel pressure gauge might indicate incorrect readings.

1. Release fuel pressure to zero.
2. Disconnect fuel hose between fuel filter and fuel tube (engine side).
3. Install pressure gauge between fuel fliter and fuel tube.
4. Start engine and check for fuel leakage.
5. Read the indication of fuel pressure gauge. At iding:

When fuel pressure regulator valve vacuum hose is connected.

Approximately 250.1 kPa
(2.501 bar, $2.55 \mathrm{~kg} / \mathrm{cm}^{2}, 36.3 \mathrm{psi}$) When fuel pressure regulator valve vacuum hose is disconnected.

Approximately 299.1 kPa
(2.991 bar, $3.05 \mathrm{~kg} / \mathrm{cm}^{2}, 43.4 \mathrm{psi}$)

EF \& EC-185

FUEL INJECTION CONTROL SYSTEM INSPECTION

Fuel Pressure Check (Cont'd)

6. Stop engine and disconnect fuel pressure regulator vacuum hose from intake manifold.
7. Plug intake manifold with a rubber cap.
8. Connect variable vacuum source to fues pressure regulator.

9. Start engine and read indication of fuel pressure gauge as vacuum is changed.
Fuel pressure should decrease as vacuum increases. If results are unsatisfactory, replace luel pressure regulator.

Injector Removal and Installation

1. Release fuel pressure to zero.
2. Drain coolant from radiator drain cock.
3. Remove or disconnect the following:

- Related harnesses, wires and tubes
- Intake manifold collector

For details, refer to EM section.
4. Remove injectors with fuel tube assembly.
5. Remove injectors from fuel tube assembly.
6. Install injectors as follows:

1) Clean exterior of injector tall piece.
2) Use new O-rings.

CAUTION:

Alter properiy conneciling injectors to fuel tube assembly, check connections for fuel leakage.
7. Assemble injectors with fuel tube assembly to intake manifold.

Description

The evaporative emission control system is used to reduce hydrocarbons emitted into the atmosphere from the fuel system. This reduction of hydrocarbons is accomplished by activated charcoals in the carbon canister.
The fuel vapor from the sealed fuel tank is led into the canister which contains activated carbon and the vapor is stored there when the engine is not running.
The canister retains the fuel vapor until the canister is purged by the air drawn through the bottom of the canister to the intake manifold when the engine is running. When the engine runs at idle, the purge control valve is closed.
Only a small amount of stored vapor flows into the intake manifold through the constant purge orifice. As the engine speed increases, and the throttle vacuum rises higher, the purge control valve opens and the vapor is sucked into the intake manifold through both the main purge orifice and the constant purge orifice.

Inspection

CARBON CANISTER

Check carbon canister as follows:
(A) : Blow air and ensure that there is no leakage.
(B) : Blow air and ensure that there is leakage.

Inspection (Cont'd)

fuel tank vacuum relief valve

1. Wipe clean valve housing.
2. Suck air through the cap. A slight resistance accompanied by valve clicks indicates that valve is in good mechanical condition. Note also that, by further sucking air, the resistance should disappear with valve clicks.
3. If valve is clogged or if no resistance is telt, replace cap as an assembly.

FUEL CHECK VALVE

1. Blow air through connector on fuel tank side. A considerable resistance should be felt and a portion of air flow should be directed toward the canister.
2. Blow air through connector on canister side.

Air flow should be smoothly directed toward fleel tank.
3. If fuel check valve is suspected of not properiy functioning in steps 1 and 2 above, replace it.

Description

This system returns blow by gas to both the intake manifoid and air inlet tubes.
The positive crankcase ventilation (P.C.V.) valve is provided to conduct crankcase blow-by gas to the intake manitold.
During partial throttle operation of the engine, the intake manifold sucks the blow-by gas through the P.C.V. valve.
Normally, the capacity of the valve is sufficient to handle any blow-by and a small amount of ventilating aif.

The ventilating air is then drawn from the air inlet tubes, through the hose connecting air iniet tubes to rocker cover, into the crankcase.
Under full-throttle condition, the manifold vacuum is insufficient to draw the blow-by flow through the valve, and its flow goes through the hose connection in the reverse direction.
On vehicles with an excessively high blow-by some of the flow will go through the hose connection to the air inlet tubes under all conditions.

Inspection

P.C.V. (Positive Crankcase Ventiation)

With engine running at idle, remove ventilation hose from P.C.V. valve; if the valve is working properly, a hissing noise will be heard as air passes through it and a strong vacuum should be felt immediately when a finger is placed over valve intet.

VENTILATION HOSE

1. Check hoses and hose connections for leaks.
2. Disconnect all hoses and clean with compressed air. If any hose cannot be freed of obstructions, replace.

General Specifications

PRESSUFE REGULATOR
Regalated pressure
$\mathrm{kPa}\left\{\right.$ bar, kg/emt ${ }^{2}$, psit

$299.1\{2.991,3.05,43.4\}$

Inspection and Adjustment

Idle speed*1 rpmi	
No-load'2	
M/T	$700+50$
A / T (in ' N ' position)	
Norl-turba	770 ± 50
Turbo	750 ± 50
Air combitioner: ON	
Non-turbo	800 ± 50
Turbo	850 ± 50
lignition timing degree	1512 B T.D.C.
Fhrotle sensor idfe position V	0.4-0.5

FUEL PUMP

Resistance $\quad \Omega \quad$ Approximately 0.5

EXHAUST GAS TEMPERATURE SENSOR

Resistance fat $\left.100^{\circ} \mathrm{C}\left(212^{\circ} \mathrm{F}\right)\right]$	$\mathrm{k} \Omega$	85.3 ± 8.53

EXHAUST GAS SENSOR HEATER

fesistance	a	$3-1,000$

A.A.C. VALVE

Resistance	$\boldsymbol{\$}$	Approximalaly 10

INJECTOR

Resistance \quad 10-14

THROTTLE SENSOR

Accelerator pedal conditions	Fesistance ${ }^{\text {k }}$ \%
Completefy released	Approximately 1
Partially released	1-9
Completely depressed	Approximately 9

AIR REGULATOR
Resistance

POWER STEERING OIL. PRESSURE SWITCH

Resistance	Ω	Approximately $2: 3$

ENGINE CONTROL, FUEL \& EXHAUST SYSTEMS

SECTION

CONTENTS

ENGINE CONTROL SYSTEM FE-2
FUEL SYSTEM FE-3
EXHAUST SYSTEM FE-4

Accelerator Control System

- When removing accelerator cable, make a mark to indicate lock nut's initial position.
- Check that throttle valve opens fully when accelerator pedal is fully depressed and that it returns to idle position when pedal is released.
- Adjust accelerator cable according to the following procedure.

Tighten 'adjusting nut" until "throttle drum'" starts to move.
From that position turn back "adjusting nut" 1.5 to 2 turns, and fasten it with a lock nut.

- Check accelerator control parts for improper contact with any adjacent parts.
- When connecting accelerator cable, be careful not to twist or scratch its inner wire.

WARNING:

When replacing fuel line parts, be sure to observe the following:

- Put a "CAUTION: INFLAMMABLE" sign in workshop.
- Be sure to furnish workshop with a CO_{2} fire extinguisher.
- Do not smoke while servicing fuel system. Keep open flames and sparks away from work area.
- Be sure to disconnect battery ground cable before conducting operations.
- Put drained fuel in an explosion-proof container and put Itd on securely.

CAUTION:

- Before disconnecting fuel hose, release fuel pressure from fuel line. Refer to "Changing Fuel Filter" in MA section.
- Do not disconnect any fuel line unless absolutely necessary.
- Plug hose and pipe openings to prevent entry of dust or dirt.
- Always replace 0 -ring and clamps with new ones.
- Do not kink or twist hose and tube when they are installed.
- Do not tighten hose clamps excessively.
- When installing fuel check valve, be careful of its destgnated direction. (Aefer to section EF \& EC.)
- After assembly, run engine and check for fuel leaks at connections.

CAUTION:

- Always replace exhaust gaskets with new ones when reassembling.
- With engine running, check all tube connections for exhaust gas leaks, and entire system for unusual noises.
- After installation, check to assure that mounting brackets and mounting insulator are free from undue stress. If any of above parts are nol installed properly, excessive noise or vibration may be transmitted to vebicle body.

CLUTCH

\square SECTION CL

CONTENTS

PRECAUTIONS AND PREPARATION CL- 2
CLUTCH SYSTEM CL- 4
INSPECTION AND ADJUSTMENT CL- 7
HYDRAULIC CLUTCH CONTROL CL- 9
CLUTCH RELEASE MECHANISM CL-13
CLUTCH DISC AND CLUTCH COVER CL-15
SERVICE DATA AND SPECIFICATIONS (S.D.S.) CL-17

Precautions

- Recommended fluid is brake fluid "DOT 3".
- Never reuse dralned brake fluid.
- Be careful not to splasi brake filuid on painted areas.
- When removing and installing clutch piping, use Toos.
- Use new brake fluid to clean or wash all parts of master cyllnder, operating cylinder and clutch damper.
- Never use mineral oils such as gasoline or kerosene. It will ruin the rubber parts of the hydraulic system.
WARNING:
After cleaning the clutch disc, wipe it with a dust collector. Do not use compressed air.

Preparation

SPECIAL SERVICE TOOLS
Tool number
Tool name
ST20050010
Base plate
ST20050100
Distance piece
Giare nut tofque wrench

PRECAUTIONS AND PREPARATION

Preparation (Cont'd)

COMMERCIAL SERVICE TOOLS

Fool name	Description	
Bearing puter		Removing release bearing
Bearing drift		fnstalling release beafing $\begin{aligned} & \text { a: } 50 \mathrm{~mm}(1.97 \mathrm{in}) \mathrm{dia} . \\ & \text { b: } 45 \mathrm{~mm}(1.77 \mathrm{in}) \mathrm{dia} . \end{aligned}$

VG30DE engine model

SCl410

VG30DETT engine model

SCLA11

Vacuum Hose Layout - VG30DETT Engine
 Model -

R.H. drive model

Adjusting Clutch Pedal

1. Adjust pedal height with A.S.C.D. cancel switch and HICAS clutch switch or power steering clutch switch.

Pedal height " H ":
VG30DE engine
211-221 mm (8.31-8.70 in)
L.H.D. model with VG30DETT engine

183 - 193 mm (7.20-7.60 In)
R.H.D. model with VG30DETT engine

197-207 mm (7.76-8.15 m)

2. Adjust pedal free play with master cylinder push rod. Then tighten lock nut.

Pedal free play "A":

$$
1.0-3.0 \mathrm{~mm}(0.039-0.118 \mathrm{in})
$$

Pedal free play means line following total measured at position of pedal pad:

- Play due to clevis pin and clevis pin hole in ciutch pedal.

3. Make sure that clevis pin can rotate smoothly.

If not, readiust pedal free play with master cylinder push rod.

Bleeding Procedure

1. Bleed air from clutch operating cyfinder according to the following procedure.

- Carefully monitor fluid level at master cylinder during bleeding operation.
a. Top up reservoir with recommended brake fluid.
b. Connect a transparent vinyl tube to air bleeder valve.
c. Fully depress chutch pedal several times.
d. With clutch pedal depressed, open bleeder valve to release air.
e. Close bleeder valve.
f. Repeat steps c through e above until brake fluid fiows from air bleeder valve without air bubbles.

2. Bleed air from clutch piping connector according to the above procedure.
3. Repeat the above bleeding procedure 1 and 2 several times.

Clutch Master Cylinder

(同): Apqly rubber grease.
気: N-m (kgen, ft lb)

DISASSEMBLY AND ASSEMBLY

- Push piston into cylinder body with screwdriver when removing and installing valve stopper.

(wawhaw	
	SCL214

- Align groove of piston assembly and valve stopper when installing valve stopper.
- Check direction of piston cups.

Clutch Master Cylinder (Cont'd) INSPECTION

- Check cylinder and piston rubbing surface for uneven wear, rust or damage. Replace if necessary.
- Check piston with piston cup for wear or damage. Replace if necessary.
- Check return spring for wear or damage. Replace if necessary.
- Check reservoir for deformation or damage. Replace if necessary.
- Check dust cover for cracks, deformation or damage. Replace if necessary.

Operating Cylinder

INSPECTION

- Check rubbing surface of cylinder for wear, rust or damage. Replace if necessary.
- Check piston with piston cup for wear or damage. Replace if necessary.
- Check piston spring for wear or damage. Replace if neces. sary.
- Check dust cover for cracks, deformation or damage. Replace if necessary.

Clutch Booster - VG30DETT Engine Model -

H: N $-\mathrm{m}(\mathrm{kg}-\mathrm{m}, \mathrm{ft}-\mathrm{lb})$

INSPECTION

Hoses and connectors

- Check condition of vacuum hoses and connections.
- Check vacuum hoses and check valve for air tightness.

Check valve

- Instalf check valve properly paying attention to its direction.
- When pressure is applied to the clutch booster side of check valve and valve does not open, replace check valve with a new one.

ADJUSTMENT

Output rod length " A ":
$13.35-13.60 \mathrm{~mm}(0.5256-0.5354 \mathrm{in})$

If amount of adjustment required exceeds 0.5 mm (0.020 in), reaction disc may have either been dislocated or fallen off. Replace clutch booster assembly.

Input rod length ' B ": 113 mm (4.45 in)

REMOVAL AND INSTALLATION

- Install retainer spring and holder spring.
- Remove release bearing.
- Install release bearing with a suitable drift.

INSPECTION

- Check refease bearing to see that it rolls freely and is free from noise, cracks, pitting or wear. Replace if necessary.
- Check release sleeve and withdrawal fever rubbing surface for wear, rust or damage. Replace if necessary.

LUBRICATION

- Apply recommended grease to contact surface and rubbing surface.
Too much lubricant might damage clutch disc facing.

Clutch Disc

inspection

- Check clutch disc for wear of facing.

Wear limit of facing surface to rivet head:
0.3 mm (0.012 in)

- Check clutch disc for backlash of spline and runout of facing.

Maximum backlash of spline (at outer edge of disc):
$1.0 \mathrm{~mm}(0.039 \mathrm{~m})$
Runout limit:
$1.0 \mathrm{~mm}(0.039 \mathrm{in})$
Distance of runout check point (Irom hub center):
VG30DE engine
115 mm (4.53 in)
VG30DETT engine
120 mm ($\mathbf{4 . 7 2 \mathrm { in } \text {) }) ~}$

- Check clutch disc for burns, discoloration or oil or grease leakage. Replace if necessary.

INSTALLATION

- Apply recommended grease to contact surface of spring portion.
Too much lubricant might damage clutch disc facing.

Clutch Cover and Flywheel

INSPECTION AND ADJUSTMENT

- Set Tool and check height and unevenness of diaphragm spring.

```
Dlaphragm spring height " \(A\) ":
```

VG30DE engine
$37.5-39.5 \mathrm{~mm}(1.476-1.555 \mathrm{in})$ VG30DETT engine
$36.5-38.5 \mathrm{~mm}(1.437-1.516 \mathrm{in})$

- Set $0.5 \mathrm{~mm}(0.020 \mathrm{In})$ feeler gauges on distance pleces (ST20050100) when checking diaphragm spring height.
- Check thrust rings for wear or damage by shaking cover assembly and listening for chattering noise, or lightly hammering on rivets for a slightly cracked noise. Replace clutch cover assembly if necessary.
- Check pressure plate and clutch disc contact surface for slight burns or discoloration. Repair pressure plate with emery paper.
- Check pressure plate and clutch disc contact surface for deformation or damage. Replace if necessary.
- Adjust unevenness of diaphragm spring with Tool.

Uneven limit: $0.5 \mathrm{~mm}(0.020 \mathrm{in})$

FLYWHEEL INSPECTION

- Check contact surface of flywheel for slight burns or discoloration. Repair flywheel with emery paper.
- Check flywheel runout.

Runout (Total indicator reading):
Less than 0.15 mm (0.0059 in)

INSTALLATION

- Insert Tool into clutch disc hub when installing clutch cover and dise.

General Specifications

CLUTCH CONTROL SYSTEM

Type of clutch control	Hydraulic
CLUTCH MASTER CYLINDER	
tnner diameter	mim fin)

CLUTCH OPERATING CYLINDER

Inmer diameter		19.05 (3/4)

CLUTCH DISC

Model	24018	2507BL
Engine	VG3@DE	VG30DETT
Facifog size (Outer dia. x infer dia. x (hicicness) mim (iof)	$\begin{gathered} 240 \times 160 \times 3.5 \\ (9.45 \times 6.30 \times \\ 0.138) \end{gathered}$	$\begin{gathered} 250 \times 160 \times 3.5 \\ \{9.84 \times 6.30 \times \\ 0.138) \end{gathered}$
Thickress of disc asssembly 	$\begin{gathered} 8.1+8.5(0.319-0.335) \\ \text { with } 4,904 \mathrm{~N}(500 \mathrm{~kg}, 1,703 \mathrm{lb}) \end{gathered}$	

CLUTCH COVER

Aodel	C249	C2505
Engine	VG300E	VG30DETT
	$\begin{gathered} 5,688 \\ (580,1,279) \end{gathered}$	$\begin{gathered} 7,846 \\ (800,1,764) \end{gathered}$

CLUTCH BOOSTER (VG3ODETT engine model)

Model	M45
Diaphragm diafneter man (in)	$114.3(4.50)$

CLUTCH PEDAL

Unit: mm (in)		
Engine	VG3ODE	VG@ODET
Pedal heignt "H"'		
L.H.D.	-	$\begin{gathered} 183-193 \\ (7.20-7.60) \end{gathered}$
P.H.O.	$\begin{gathered} 211-221 \\ (6.31-8.70) \end{gathered}$	$\begin{gathered} 197-207 \\ (7.76-8.55) \end{gathered}$
Pedal tree play (Backlash at clevis)	$1.0-3.0$ (0.039-0.118)	

r: Measured from surface of dash lowef panef to pedal pad

CLUTCH DISC

Unit: mm (in)

Mockel	240TBL	2507 EL
Wear lirrit of facthg sturace to rivet head	0.3 (0.012)	
Fangut limit of facing	1.0 (0.039)	
Distance of runout check point (from the hub center)	115 (4.53)	120 (4.72)
Maximum backlash of spline (at outer edge of disc)	1.0 (0.039)	

CLUTCH COVER

	Unit: mme (in)	
Model	c240s	C250s
Diaphragm spring height	$\begin{gathered} 37.5-39.5 \\ (1.476-1.555) \end{gathered}$	$\begin{gathered} 36.5-38.5 \\ (1.437-1.516) \end{gathered}$
Uneven limit of diaphragm spring toe height	0.5 (0.020)	

CLUTCH BOOSTER

Unil: mem (in)

	$13.35-13.60$
Output rod length "A"	$(0.5256-0.5354)$
Fiput rod fength "B"	$113(4.45)$

MANUAL TRANSMISSION

:

CONTENTS

PREPARATION MT- 2
ON-VEHICLE SERVICE MT. 4
REMOVAL AND INSTALLATION MT- 5
MAJOR OVERHAUL MT- 7
DISASSEMBLY MT-12
INSPECTION MT-20
ASSEMBLY MT-22
TRANSMISSION OLL COOLER SYSTEM MT-34
SERVICE DATA AND SPECIFICATIONS (S.D.S.) MT-35

SPECIAL SERVICE TOOLS

Too number Toof name	Description	
ST23540000 Pin punch		Removing and installing retalaing pin
$\begin{aligned} & \text { ST30031000 } \\ & \text { Puller } \end{aligned}$		Removing 1st 8 znd synchronizer assembly Removing counter gear rear thrust bearing Removing main drive bearing Measuring 2nd \& 3ra inner baulk ring
S733290007 Puller		Removing rear oil seal
ST33230000 Drift		Pemoving mainshaft and counter gear
ST22350000 Drift		Removing counter gear front bearing (Use with KV38100300)
KV38 700300 Drift		Removing counter gear front bearing (Use with ST22350000) installing counter gear rear bearing
ST30720000 Drift		Removing mainshaft front bearing mstalling mainshaft front bearing
ST33210000 Drift		installing counter gear front bearing finstalling front cover oif seal

Tool number Tool name	Description
ST3 10613090 Orift	Installing main drtve gear bearing 3: $72 \mathrm{~mm}(2.83 \mathrm{in})$ die. b: $48 \mathrm{~mm}(1.89 \mathrm{in})$ dia.
ST37750000 Urift	Removing counter gear rear bearing Installing O.D. geaz bushing Installing reverse cone Installing reverse counter gear installing counter gear rear end bearing
ST22452000 Drift	Installing reverse hub Installing mainshaft rear bearing
ST 33400001 Drift	Installing rear oil seal
ST36730000 Drift	Installing sub-gear on zeverse idler gear 6: $50 \mathrm{~mm}(4.97 \mathrm{in}) \mathrm{df}$. b: $39 \mathrm{~mm}(4.54 \mathrm{in}) \mathrm{dia}$.

COMMERCIAL SERVICE TOOLS

Tool name	Description	
Puller		Removing counter gear rear end beafing Aemoving mainshaft rear bearing Femoving reverse synchronizer hub Removing reverse counter gear
Drift		Installing sub-gear snap ring
Drift		installing O.D. main gear installing reverse gear bushing

Replacing Rear Oll Seal

REMOVAL

INSTALLATION

Position Switch Check

BACK-UP LAMP SWITCH

- Check continuity.

Gear position	Continuity
Reverse	Yes
Except feverse	No

NEUTRAL SWITCH

- Check continuity.

Gear position	Continuity
Neutra童	Yes
Except neutral	No

Removal

- Remove exhaust tube.

Oit cooler equipped model onfy

- Drain gear oli.
- Disconnect oil tubes from transmission case.
- Remove support bracket from M/T assembly.
- Remove control rod from shift lever.
- Remove propeller shaft - Refer to section PD.
- Insert plug into rear oll seal after removing propeller shaft.
- Be careful not to damage spline, sleeve yoke and rear oil seal when removing propeller shaft.
- Disconnect back-up lamp switch and neutral switch harness connectors.
- Support manual transmission with a jack.
- Remove rear mounting.
- Lower manual transmission.

Installation

- Tighten all transmission bolts.

Bolt No.	Tightening torque $\mathrm{N} \cdot \mathrm{m}$ ($\mathbf{k g}-\mathrm{mm}, \mathrm{ft}$-ib)	$\ell \mathrm{mm}$ (in)
(1)	39-49 (4.0-5.0, 29-36)	100 (3.94)
(2)	$39-49$ (4.0-5.0. $29-36)$	65 (2.56)
(3)	$39-49(4.0-5.0 .29-36)$	60 (2.36)
(4)	29-39 (3.0-4.0, 22-29)	60 (2.36)
(5)	29-39 (3.0-4.0, 22-29)	55 (2.17)
(b)	39 - $49(4.0+5.0 .29-36)$	25 (0.98)
(${ }^{\text {a }}$	29-39 (3.0-4.0. $22-29)$	25 (0.98)

- Fill with gear oil. (Oil cooler equipped model only) Refer to MA section.

Case Components

In: $\mathrm{N} \cdot \mathrm{m}\{\mathrm{kg}-\mathrm{m}, \mathrm{ft} \cdot \mathrm{lb} \mid$
 Patt: KP81000250) or equivalent.

Gear Components

SMT595C

Shift Control Components

MAJOR OVERHAUL

Shift Control Components (Cont'd)

Case Components

f. Remove check ball plug, check spring and check ball. Then remove interlock stopper.
H interlock assembly is removed as a unit, the check ball can fall into transmission case.
2. Remove upper cover, return spring and check ball.
3. Drive out retaining pin from shift \& selector lever.
4. Remove control rod from M / T assembly.

Be caretul not to damage control rod oll seal and dust cover.
5. Drive out retaining pin from striking arm.

Case Components (Cont'd)

6. Remove rear extension together with striking arm by tapping lightly.
7. Remove front cover and gasket.
8. Remove stopper ring and main drive bearing snap ring.
9. Remove transmission case by tapping lightly.

Case Components (Cont'd)

10. Remove front cover oil seal.

Shift Control Components

1. Mount adapter plate on vise.
2. Remove O.D. \& reverse fork rod.
3. Remove check ball plug, check ball and return spring.
4. Drive out retaining pin from striking lever.
5. While pulling out striking rod, remove striking lever and striking interlock. Then remove 1st \& 2nd, 3rd \& 4th and reverse shifif forks.
6. Drive out retaining pin from O.D. shift fork.
7. Pull out O.D. fork rod and then remove O.D. shift tork.

Gear Components

1. Before removing gears and shafts, measure each gear end play.

Gear	End play $\mathrm{mm}(\mathrm{in})$
1st main gear	$0.23-0.33(0.0091-0.0130)$
2nd maln gear	$0.23+0.33(0.0091-0.0130)$
3rd main gear	$0.23-0.33(0.0091-0.0130)$
O.0. counter gear	$0.23-0.33(0.0091-0.0130)$
Reverse main gear	$0.33-0.43(0.0130-0.0769)$

- If not within specification, disassemble and check contact surface of gear to hub, washer, bushing, needle bearing and shaft.

2. Remove rear side components on mainshaft and counter gear.
a. Remove snap ring, speedometer drive gear and steel ball.
b. Remove reverse coupling sleeve.
c. Remove mainshaft rear snap ring and counter gear rear snap ring.
d. Remove C -ring holder and mainshaft C -rings from mainshaft. Use punch and hammer to remove C -rings.
e. Pull out counter gear rear end bearing.
f. Remove reverse idler gear and reverse idler thrust washers.

Gear Components (Cont'd)

g. Remove sub-gear from reverse idler gear.

h. Pull out mainshaft rear bearing.
i. Pull out reverse main gear together with mainshaft spacer and reverse synchronizer hub. Then remove reverse gear needle bearings.
j. Pull out reverse counter gear.
k. Remove O.D. coupling sleeve together with O.D. baulk ring, reverse baulk ring and spring inserts.
I. Pulf out reverse gear bushing.

DISASSEMBLY

Gear Components (Cont'd)

m. Pull out O.D. counter gear together with reverse cone.
3. Press out mainshaft and counter gear alternately.

Be sure to press mainshaft and counter gear alternately so as not to allow the front surface of one to contact the rear surface of the other.

4. Remove front side components on mainshaft.
a. Remove 1st gear washer and steel ball.
b. Remove 1st main gear and 1st gear needle bearing.

c. Press out 2nd main gear together with 1st gear bushing and ist \& 2nd synchronizer assembly.
d. Remove mainshaft front snap ring.

Gear Components (Cont'd)

ShT385A

5. Remove front side components on counter gear.
a. Remove counter gear rear thrust bearing.
b. Remove sub-gear components.
6. Remove main drive gear bearing.
a. Remove main drive gear snap ring and spacer.
b. Press out main drive gear bearing.

DISASSEMBLY

Gear Components (Cont'd)
7. Remove bearings from case components.

Shift Control Components

- Check contact surface and sliding surface for wear, scratches, projections or other damage.

Gear Components

 GEARS AND SHAFTS- Check shafts for cracks, wear or bending.
- Check gears for excessive wear, chips or cracks.

SYNCHRONIZERS

- Check spline portion of coupling sleeves, hubs, and gears for wear or cracks.
- Check baulk rings for cracks or deformation.
- Check shifting inserts for wear or deformation.
- Check insert springs for deformation.

Clearance between baulk ring and gear

- Measure wear of main drive, 1st and O.D. baulk rings.

Unit: mm (in)

	Standard	Wear limit
1st	$1.05-1.3(0.0413-0.0512)$	$0.7(0.028)$
Main drive	$1.05-1.3(0.0413-0.0512)$	$0.7(0.028)$
O.D.	$1.05-1.3(0.0413-0.0512)$	$0.7(0.028)$

If the clearance is smaller than the wear limit, replace baulk ring.

Gear Components (Cont'd)

Outer baulk ring

- Measure wear of 2nd and 3rd baulk rings.
a. Place baulk rings in position on synchronizer cone.
b. While holding baulk rings against synchronizer cone as tar as it will go, measure dimensions " A " and " 8 ".

Unft: man (in)

Dimension	Standard	Wear limit
A	$0.6-1.1$	
8	$(0.024-0.043)$	$0.2(0.008)$
	$(0.028-0.035)$	

c. If dimension " A " or " B " is smaller than the wear limit, replace baulk ring.

- Measure wear of reverse baulk ring.
a. Place baulk ring in position on reverse cone.
b. While holding baulk ring against reverse cone as far as it will go, measure dimension " A " with dial indicator.

Unit: mm (in)

	Standard	Wear limit
Dimension "A"	-0.1 to 0.35 $(-0.0039$ to 0.0138$)$	$0.7(0.028)$

c. If dimension " A " is larger than the wear limit, replace bauf ring.

BEARINGS

- Make sure bearings roll freely and are free from noise, crack, pitting or wear.

Gear Components

1. Install bearings into case components.

2. Install main drive gear bearing.
a. Press main drive gear bearing.
b. Install main drive gear spacer.

Gear Components (Cont'd)

c. Select proper main drive gear snap ring to minimize clearance of groove.

Allowable clearance of groove:
$0 \cdot 0.1 \mathrm{~mm}(0=0.004 \mathrm{in})$
Main drive gear snap ring

Thickness mm (in)	Part number
$1.89(0.0744)$	$32204-01 \mathrm{G00}$
$1.98(0.0780)$	$32204-01 \mathrm{G01}$
$2.05(0.0807)$	$32204-01 \mathrm{G02}$
$2.12(0.0835)$	$32004-01 \mathrm{G0} 03$
$2.19(0.0862)$	$32204-01 \mathrm{G} 04$

d. Install selected snap ring on main drive gear.
3. Install components on counter gear.
a. Install sub-gear components.

When installing sub-gear snap ring, tap sub-gear snap ring into position on counter gear.

SMF577A

b. Install counter gear rear thrust bearing.
4. Instali front side components on mainshaft.
a. Assemble ist \& 2nd synchronizer.

Gear Components (Cont'd)

c. Press on 3rd \& 4th synchronizer assembly together with 3rd main gear and 3rd gear needle bearing.
Pay attention to direction of synchronizer assembly,
d. Select proper snap ring to minimize clearance of groove.

Allowable clearance of groove:
0-0.1 mm (0-0.004 in)
Mainshaft front snap ring

Thickness mm (in)	part nsmber
$1.89(0.0744)$	$32204-01 \mathrm{G00}$
$1.98(0.0780)$	$32204-01 \mathrm{G01}$
$2.05(0.0807)$	$32204-01 \mathrm{G02}$
$2.12(0.0835)$	$32204-01 \mathrm{G0} 0$
$2.19(0.0862)$	3220401 G 04

e. Install selected snap ring on mainshaft.
f. Press on 1st \& 2nd synchronizer assembly together with 2nd main gear and 2nd gear needle bearing.

Gear Components (Cont'd)

g. Press on 1st gear bushing using ist gear washer.
h. Install 1st main gear and needle bearing.
i. Install steel ball and 1st gear washer.

Apply multi-purpose grease to steel ball and 18t gear washer before installing.
5. Select proper counter gear front bearing shim when replacing transmission case, counter gear, counter gear thrust bearing or sub-gear components.
a. Install counter gear with sub-gear components, counter gear front and rear thrust bearing on adapter plate.
b. Remove counter gear front bearing shim from transmission case.
c. Place adapter plate and counter gear assembly in transmission case (case inverted).

Gear Components (Cont'd)

d. Tighten adapter plate to transmission case using 2 boits.
e. Place dial indicator on rear end of counter gear.
f. Move counter gear up and down and measure dial indicator deflection.
g. Select proper shim using table below as a guide.

Counter gear end play:
$0.10-0.25 \mathrm{~mm}(0.0039-0.0098 \mathrm{in})$
Table for selecting proper counter gear front bearing shim

| Dial indicatot deflection |
| :---: | :---: | :---: |
| $\mathrm{mm}(\mathrm{in})$ |\quad| Thickness of |
| :---: |
| proper washer |
| $\mathrm{mm}(\mathrm{in})$ |\quad Part number

6. Select proper reverse idler rear thrust washer when replacing rear extension, reverse idler gear, reverse idler shaft or reverse idler thrust washer.
a. Install reverse idler gear, reverse idler needle bearings, reverse idler thrust washers and reverse idler shaft into rear extension.
When replacing reverse idler rear washer, install ether A or B.

Reverse idler rear thrust washer

	部ickness mm (in)	Part number
A	1.97 (0.0776)	32284-01G10
8	2.07 (0.0815)	32284-01G年

Gear Components (Cont'd)

b. Place dial indicator on front end of reverse ider shaft.
c. Put straightedge on front surface of rear extension as a stopper of reverse idler shaft.
d. Move reverse idler shaft up and down and measure reverse idler gear end play.

Reverse idler gear end play:
$0.30-0.53 \mathrm{~mm}(0.0118-0.0209 \mathrm{in})$
e. If not within specification, replace reverse idler rear thrust washer with the other (A or B) and check again.
7. Install mainshaft and counter gear on adapter plate and main drive gear on mainshaft.
a. Mount adapter plate on vise and apply mult-purpose grease to counter gear rear bearing.
b. Install mainshaft a little on mainshaft front bearing.

To allow for installation of counter gear, do not install mainshaft completely.
c. Install counter gear on counter gear rear bearing and install main drive gear, pilot bearing and spacer on mainshaft.

d. Install mainshaft and counter gear completely by tapping rear side of adapter plate and pulling mainshaft.
8. Install rear side components on mainshaft and counter gear.
a. Install O.D. gear bushing while pushing on the front of counter gear.
b. Install O.D. main gear.

Pay attention to direction of O.D. main gear. (B is wider than A as shown at left.)
c. Install adapter plate with gear assembly onto transmission case.
d. Install O.D. gear needle bearing and then install O.D. counter gear and reverse ider shaft.
e. Install reverse gear bushing.

ASSEMBLY

Gear Components (Cont'd)

f. Install reverse cone.

g. Install insert springs and reverse baulk ring on O.D. coupling sleeve. Then install them and O.D. baulk ring on O.D. counter gear.
Pay aftention to direction of O.D. coupling sleeve.
h. Install reverse counter gear.
i. Install sub-gear on reverse idler gear.
j. Install reverse gear needle bearing and then install reverse main gear, reverse idler gear and reverse idler thrust washers.

Gear Components (Cont'd)

k. Install reverse hub.

Pay attention to lis direction.
I. Install mainshaft spacer and mainshaft rear bearing.
m. Install speedometer drive gear.
n. install counter gear rear end bearing.
o. Separate adapter plate from transmission case and mount adapter plate on vise again.
p. Select proper mainshaft C-ring to minimize clearance of groove.

Allowable clearance of groove:
$0-0.1 \mathrm{~mm}(0 \cdot 0.004 \mathrm{in})$
Mainshaft C-ring

Thickness mm (in)	Part number	Thickness mm (in)	Part number
2.63 (0.1035)	32348-01G15	3.19 (0.1256)	32348-01G07
2.70 (0.1083)	32348-01G00	3.26 (0.1283)	32348-01908
2.77 (0.1091)	32348-01901	3.33 (0.1311)	32348-01G09
2.84 (0.1f18)	32348-01G02	3.40 (0.1339)	32348-01G10
2.91 (0.1146)	32348-01G03	3.47 (0.1366)	32348-01611
2.98 (0.1173)	32348-01G04	3.54 (0.1394)	3234801 G 12
3.05 (0.1201)	32348-01G05	3.61 (0.1421)	32348-01G13
3.12 (0.1228)	32348-01G06	3.68 (0.1449)	32348-01G14

q. Instalf selected C -ring, C-ring holder and mainshaft rear snap ring.

Gear Components (Cont'd)

F. Install spacer and then select proper counter gear rear shap ring to minimize clearance of groove.

Allowable clearance of groove:
$0-0.1 \mathrm{~mm}$ ($0-0.004 \mathrm{in}$)
Counter gear rear snap ring

Thickness mm (in)	Part number
1.26 (0.0496)	32236-01908
1.32 (0.0520)	32236-01G00
1.38 (0.0543)	32236-0160
1.44 (0.0567)	32236-01G02
1.50 (0.0591)	32236-01G03
1.56 (0.0614)	32236-01G04
1.62 (0.0638)	32236-01G05
1.68 (0.0661)	32236-01G06
1.74 (0.0685)	32236-01G07

s. Install sefected counter gear rear snap ring.
t. Install reverse coupling sleeve.

Pay attention to its direction.
u. Measure each gear end play as a final check - Refer to 'DISASSEMBLY''.

Shift Control Components

1. Install O.D. fork rod and O.D. shift fork. Then install retaining pin into O.D. shift fork.
2. Install 1 st \& 2nd, 3 rd \& 4 th and reverse shift forks onto coupling sleeve.
3. Install striking rod into hole of shift forks, striking lever and interlock and then install retaining pin into striking lever. Wake sure that striking rod moves smoothly.

Shift Control Components (Cont'd)

4. Install check ball, return spring and check ball plug. Apply sealant to thread of check ball plug.

Case Components

1. Install front cover oil sead.

Apply mult-purpose grease to seal Ip.

2. Install selected counter gear front bearing shim onto transmission case.
Apply multi-purpose grease.
3. Apply sealant to mating surface of transmission case.
4. Install gear assembly onto transmission case.
5. Install check spring and check ball into interlock stopper. Apply multi-purpose grease to check ball.
6. Install interlock stopper assembly and then tighten check ball plug.
Apply sealant to thread of check ball plug.
7. Install stopper ring and main drive bearing snap ring.

Case Components (Cont'd)

8. Install front cover and gasket.

Apply sealant to thread of 3 bolts shown left.
9. Apply sealant to mating surface of adapter plate.
10. Install rear extension together with striking arm.
11. Install retaining pin into striking arm.
12. Install control rod.

Be careful not to damage control rod oll seal and dust cover.
13. Install retaining pin into shift \& selector lever.
14. Install return spring and check ball and then install control housing.
Apply sealant to mating surface of rear extension.
15. Tighten control housing bolts.

SMT72解

- For Circuit Diagram, Wiring Diagram and oil pump operation, refer to "DIFFERENTIAL OIL COOLER SYSTEM" in PD section.

General Specifications

Engine	VG30DE	VG3ODETT
Tratsmission modet	RS5R30A	
Stuift pattern		
Synchromesh type		
Gear ratio ist 2nd 3rd 4in O.D. Reverse		
Namber of teeth Main drive gear Main gear 1st 2nd 3 ra O.D. Reverse		
Counter drive gear Counter gear 1 st 2nd 3fd 0.0. feverse		
Aeverse idler gear		
Old capacity $\quad \ell$ (Imp pt)	$2.8(4.7 / 8)$	3.1 (5-1/2)

Inspection and Adjustment

GEAR END PLAY

Gear	Find play mmp (\mid)
1st main gear	$0.23-0.33(0.0097-0.0130)$
2nd main gear	0.23-0.33 (0.009\% - 0.0130)
3 drdmain geaz	$0.23+0.33(0.0085-0.0130\}$
O.D. counter gear	0.23-0.33 (0.009 -0.0130$)$
Meverse main gear	0.33-0.43 (0.0130 - 0.0169)
Counter gear	$0.10-0.25(0.0039-0.0098)$
Reverse folier geaf	$0.30-0.53$ (0.0118-0.0209)

CLEARANCE BETWEEN BAULK RING AND GEAR

1st, main drive and O.D. baulk ring
Unit: man (in)

	Standard	Weaf limit
1st	$\begin{gathered} 1.05-1.3 \\ (0.0413-0.0512) \end{gathered}$	0.7 (0.028)
Main drive	$\begin{gathered} 1.05-7.3 \\ (0.0413-0.0512) \end{gathered}$	0.7 (0.028)
O.O.	$\begin{gathered} 1.05=5.3 \\ (0.0413+0.0512) \end{gathered}$	0.7 (0.028)

2nd and 3rd baulk ring

dISTANCE BETWEEN REAR SURFACE OF REVERSE CONE AND REVERSE BAULK RING

Unit: mon (in)

	Standard	Wear limit
Gimensiof " A "	-0.1 to 0.35 $(-0.0039$ to 0.0138)	0.7 (0.026)

AVAILABLE SNAP RING

Main drive gear snap ring

Allowable clearance	$0-0.1 \mathrm{~mm}(0+0.004 \mathrm{in})$
	Part number
1.89 (0.0744)	$32204-01600$
1.98 (0.0780)	32204-01G01
2.05 (0.0807)	32204-01G02
2.12 (0.0836)	32204-01G03
2.19 (0.0862)	32204-01G04

Mainshaft front snap ring

Alowable clearance	
Thickness mme (in)	Part number
1.89 (0.0744)	32204-01G00
1.98 10.0780$)$	3220401601
2.05 (0.0607)	32204-01902
2.12 (0.0835)	32204-91903
2.19 (0.0862)	32204-01904

Counter gear rear snap ring

Allowable dearance	0-0.1 mm (0.0.004 in)
Thickness mm (im)	Part ramber
1.26 (0.049\%)	$32236-01 \mathrm{GOP}$
1.32 (0.0520)	32336-01G00
1.38 (0.0543)	3223601 GQ
1.44 (0.0567)	32236-01902
t.50 (0.0591)	32236-01G03
1.56 (0.0674)	32236-01904
1.62 (0.0638)	$32236-01605$
1.68 (0.0861)	32236-01G06
1.74 (0.0685)	32236-41907

AVAILABLE C-RiNG

Mainshaft C-ring

Allowable clearance		$0-0.5 \mathrm{nmm}(0-0.004 \mathrm{in})$	
Thickness mm (in)	Part number	Thickness mith (in)	Part number
2.63 (0.1035)	32348-01G15	3.19 (0.1256)	32348-01907
2.70 (0.1063)	32348-01G00	3.26 (0.1283)	$32340-01608$
2.77 (0.1094)	32348-01G01	3.33 (0.1511)	32348-01609
2.84 (0.1118)	32348-01G02	3.40 (0.7339)	32348-01G10
2.91 (0.1146)	32348-01903	3.47 (0.1306)	32348-01G11
$2.88(0.1773)$	$32348-01$ G04	3.54 (0.7394)	32348-01612
3.05 (0.7201)	32348-01G05	3.61 (0.1421)	32348-01G13
3.12 (0.7228)	32348-01906	3.68 (0.1449)	32348-01G14

AVAILABLE SHIM AND WASHER

Table for selecting proper counter gear front bearing shim

Dial indicator deflection mm (in)	Thickness of proper washer man (in)	Patat number
0.93-1.02 (0.0366-0.0402)	0.8 (0.031)	32218-01G00
1.03-1.12 (0.0406-0.0441)	0.9 (0.035)	32218-01G01
1.13-1.22 \{0.0445-0.0490\}	1.0 (0.039)	32318-01902
$1.23-1.32$ (0.0484-0.0520)	1.1 (0.043)	32218-01G03
1.33-1.42 (0.0524-0.0569)	1.2 (0.047)	32218-01G04
1.43-1.52 (0.0563-0.0598)	1.3 (0.051)	32218-01G05
$1.53-1.62(0.0692-0.0638)$	1.4 (0.055)	32218-01G06

Reverse idier thrust washer

Thicknegs mma (in)	Part namber
1.97 (0.0776)	32284-01G10
2.07 (0.0814)	32284-01G11

AUTOMATIC TRANSMISSION

SECTION AT

CONTENTS

PREPARATION AT- 2
PRECAUTIONS AT- 4
AT CONTROL DIAGRAM AT- 5
ON-VEHICLE SERVICE AT- 8
TROUBLE DIAGNOSES AT- 12
REMOVAL AND INSTALLATION AT- 96
MAJOR OVERHAUL AT- 98
DISASSEMBLY AT-106
REPAIR FOR COMPONENF PARTS AT-118
ASSEMBLY AT-167
SERVICE DATA AND SPECIFICATIONS (S.D.S.) $\mathrm{AT}-187$
When you read wiring diagrams:- Read GI section, "HOW TO READ WIRING DIAGRAMS".- See EL section, "POWER SUPPLY ROUTING" for power distribution circuit.When you perform trouble diagnoses, read Gl section, "HOW TO FOLLOW FLOW CHARTIN TROUBLE DIAGNOSES'.

PREPARATION

SPECIAL SERVICE TOOLS

Tool number Tool name	Descriptian	
ST2505S001 Oil pressure gauge set (1) $\$ T 25051001$ Oil pressure gauge (3) ST 25052000 Hose (a) ST25053000 Joint pipe (4) $5 T 25054000$ Adapter (5) ST25055000 Adapter	(1)	Measuring line pressure
K'V31101201 Oll pressure gauge adapter		Measuring line pressure
STD7870000 Trensmission case stand		Disassembling and assembling A/T
KV31102100 Torque converter one-way clutich check toot		Checking one-way slutch in torque converter
ST25850000 Sliding hammer		Removing oil pump assembly
KV31102400 Clutch spring compressor		Removing and installing clutch return springs
\$T3:3200000 Drift		Installing oil pump housing oil seal Installing rear oil seal (RE4R01A) a: $60 \mathrm{~mm}(2,36 \mathrm{Im})$ dia. b: $44.5 \mathrm{~mm}(\mathbf{1 . 7 5 2} \mathrm{~lm})$ dia.

Tool number Yool name	Description
ST30720000	
Drift	

Service Notice

- Before proceeding with disassembly, thoroughly clean the outside of the transmission. It is important to prevent the internal parts from becoming contaminated by dirt or other foreign matter.
- Disassembly should be done in a clean work area.
- Use lint-free cloth or towels for wiping parts clean. Common shop rags can leave fibers that could interfere with the operation of the transmission.
- When disassembling parts, place them in order in a parts rack so that they can be put back into the unit in their proper positions.
- All parts should be carefully cleaned with a general purpose, non-flammable solvent before inspection or reassembly.
- Gaskets, seals and O-rings should be replaced any time the transmission is disassembled.
- It is very important to perform functional tests whenever they are indicated.
- The valve body contains precision parts and requires extreme care when parts are removed and serviced. Place removed parts in order on a parts rack so they can be put back in the valve body in the same positions and sequences. Care will aiso prevent springs and small parts from becoming scattered or lost.
- Properly installed valves, sleeves, plugs, etc. will slide along their bores in the valve body under their own weight.
- Betore assembly, apply a coat of recommended A.T.F to all parts. Petroleum jelly may be applied to 0 -rings and seals and used to hold small bearings and washers in place during reassembly. Do not use grease.
- Extreme care should be taken to avoid damage to O-rings, seals and gaskets when assembling.
- After overhatl, refill the transmission with new A.T.F.

Hydraulic Control CIrcuits

Electrical Control Chart

Mechanical Operation

Shift position		R角 verse clutch	High clutch	Forward cluten	Overrun clutch	Band servo			Forward oneway clutch	Low oneway clutch	Low \& reverse brake	Lockup	Remarks	
		$\begin{gathered} \text { 2nd } \\ \text { apply } \end{gathered}$				$\begin{gathered} \text { 3rd } \\ \text { release } \end{gathered}$	$\begin{gathered} \text { 4th } \\ \text { apply } \end{gathered}$							
P														PARK
F		\bigcirc									\bigcirc		REVERSE	
N													NEUTRAL	
$\begin{aligned} & 0 \\ & 4 \end{aligned}$	1st			0	(*)					θ			Automatic shift$4 \leftrightarrow 2 \leftrightarrow 3 \leftrightarrow 4$	
	2nd			\bigcirc	$\cdots 1$	\bigcirc								
	3 ra		0	0	0	$\cdot 2 \otimes$	(8)		-					
	4th		0	\otimes		$3 *$	\otimes	0				O		
2	1st			0	8					\bigcirc			Attomatic shift$1 \oplus 2$	
	2nd			0	\bigcirc	0								
1	1st			0	0						\bigcirc		Locks (held stationary) in 1st speed $1 \leftarrow 2$	
	2nd			0.	\bigcirc	0								

"1. Operates when overdrive switch is set to "OFF".
"2. Oif pressure is applied to both 2nd "apply" slde and 3rd "release" side of band servo piston. However, because oll pressure area on the "release" side ts greater than that on the "apply" side, brake band does not contract.
*3. Oil pressure is applied to 4th "apply" side in condition *2 above, and brake band contracts.
"4. ATT will not shift to 4th when overdrive switeh is set to "OFF" position.
O : Operates.
0 : Operates when throttle opering is less than $1 / 16$. Engine brake activates.

- Operates during "progresslve" acceleration.
* : Operates but does not aftect power transmission.

8 : Operates when throttle opening is less than $1 / 16$ but does not affect engine brake.

Cross-Sectional View

 pressed air if necessary.

- Hold each piston with rag.

7. Reinstall any part removed.

- Aiways use new sealing parts.

2. Remove oil strainer.

Control Valve Assembly and Accumulators Inspection

1. Remove oil pan and gasket and drain A.T.F.
2. Remove control valve assembly by removing fixing bolts and disconnecting harness connector.
Bolt length and location

Bolt symbol	$\ell \mathrm{mm}(\mathrm{in})$
$(\mathrm{a}$	
(B)	$33(1.30)$
	$45(1.77)$

4. Remove solenoids and valves from valve body if necessary.
5. Remove terminal cord assembly if necessary.
6. Remove accumulators A, B, C and D by applying com-

Revolution Sensor Replacement

1. Remove exhaust tube.
2. Remove revolution sensor from A/T assembly.
3. Reinstall any part removed.

- Always use new sealing parts.

Rear Oil Seal Replacement

1. Remove propeller shaft from vehicle. - Refer to section PD.
2. Remove rear oil seal.
3. Install rear oll seal.

- Apply A.T.F. before installing.

4. Reinstall any part removed.

Parking Components Inspection

1. Remove exhaust tube.
2. Remove propeller shaft from vehicle. - Refer to section PD.
3. Remove rear engine mounting member from A / T assembly while supporting A/T with jack.
4. Remove rear extension from transmission case.
5. Replace parking components if necessary.
6. Reinstall any part removed.

- Always use new sealing parts.

Inhibitor Switch Adjustment

1. Remove manual control linkage from manual shaft of A / T assembly.
2. Set manual shaft of A / T assembly in " N " position.
3. Loosen inhibitor switch fixing bolts.
4. Insert pin into adjustment holes in both inhibitor switch and manual shaft of A / T assembly as near vertical as possible.
5. Reinstall any part removed.
6. Check continuity of inhibitor switch. - Refer to "Electrical Components inspection".

Manual Control Linkage Adjustment

Move selector fever from ' P " range to "?" range. You should be able to feel the detents in each range. If the detents cannot be felt or the pointer indicating the range is improperly aligned, the linkage needs adjustment.

1. Place selector lever in "P" range.
2. Loosen lock nuts.
3. Tighten lock nut (X) until it touches trunnion pulling selector lever toward " R " range side without pushing button.
4. Back off lock nut $(x) 1$ turn and tighten lock nut (\mathbf{y}) to the specified torque.

Lock nut:

옹 $11-15 \mathrm{~N} \cdot \mathrm{~m}(1.1-1.5 \mathrm{~kg}-\mathrm{m}, 8-11 \mathrm{ft}-\mathrm{lb})$
5. Move selector lever from "P" range to "1" range. Make sure that selector lever can move smoothly.

NOTE

TROUBLE DIAGNOSES

Contents

How to Perform Trouble Diagnoses tor Quick and Accurate Repair AT- 14
Preliminary Check AT- 15
Diagnosis by CONSULT AT- 33
A/T Electrical Parts Location AT- 36
Circuit Diagram for Quick Pinpoint Check AT- 39
Wiring Diagram AT-40
Self-diagnosis AT- 44
SELF-DIAGNOSTIC PROCEDURE (With CONSULT) AT- 44
SELF-DIAGNOSTIC PROCEDURE (Without CONSULT) AT- 45
JUDGMENT OF SELF-DIAGNOSIS CODE AT- 47
REVOLUTION SENSOR CIRCUIT CHECK AT- 51
SPEED SENSOR CIRCUIT CHECK AT- 52
THROTTLE SENSOR CIRCUIT CHECK AT- 53
SHIFT SOLENOID A CIRCUIT CHECK AT- 54
SHIFT SOLENOID B CIRCUIT CHECK AT- 55
OVERRUN CLUTCH SOLENOID CIRCUIT CHECK AT. 56
LOCK-UP SOLENOID CIRCUIT CHECK AT- 57
FLUID TEMPERATURE SENSOR CIRCUIT AND
A/T CONTROL UNIT POWER SOURCE CIRCUIT CHECKS AT. 58
ENGINE REVOLUTION SIGNAL CIRCUIT CHECK AT- 60
LINE PRESSURE SOLENOID CIRCUIT CHECK AT- 61
INHIBITOR, OVERDRIVE, KICKDOWN AND IDLE SWITCH CIRCUIT CHECKS AT. 62
Diagnostic Procedure 1
(SYMPTOM: A/T CHECK lamp does not come on for about 2 seconds when turning ignition switch to "ON".) AT- 66
Dlagnostic Procedure 2
(SYMPTOM: Engine cannot be started with selector lever in " P " or " N " range or engine can be started with selector lever in "D", '2", "1" or "R" range.) AT- 67
Diagnostic Procedure 3
(SYMPTOM: Vehicle moves when it is pushed forward or backward with selector lever in " p " range.) AT- 67
Diagnostic Procedure 4
(SYMPTOM: Vehicie moves forward or backward when selecting " N " range.) AT- 68
Diagnostic Procedure 5
(SYMPTOM: There is large shock when changing from " N " to " R " range.) AT- 69
Dagnostic Procedure 6
(SYMPTOM: Venicle does not creep backward when selecting "R" range.) AT- 70
Diagnostic Procedure 7
(SYMPTOM: Vehicle does not creep forward when selecting " D ", " 2 " or " 1 " range.) AT-71
Diagnostic Procedure 8
(S¥MPTOM: Vehicle cannot be started from D_{1} on Cruise test - Part 1.) AT- 72
Diagnostic Procedure 9(SYMPTOM: A/T does not shift from D_{1} to D_{2} at the specified speed. A / T does not shiftfrom D_{4} to D_{2} when depressing accelerator pedal fully at the specified speed.)AT-73
Diagnostic Procedure 10
(SYMPTOM: A/T does not shift from D_{2} to D_{3} at the specified speed.) AT- 74
Diagnostic Procedure 11
(SYMPTOM: A/T does not shift from D_{3} to D_{4} at the specified speed.) AT- 75
Diagnostic Procedure 12
(SYMPTOM; A/T does not perform lock-up at the specified speed.) AT- 76
Diagnostic Procedure 13
(SYMPTOM: A/T does not hold lock-up condition for more than 30 seconds.) AT- 77
Diagnostic Procedure 14
(SYMPTOM: Lockwup is not released when accelerator pedal is released.) AT- 77
Diagnostic Procedure 15(SYMPTOM: Engine speed does not return to idle smoothly when A/T is shiftedfrom D_{4} to D_{3} with accelerator pedal released.
Vehicle does not decelerate by engine brake when changing overdrive switch to "OFF" position with accelerator pedal released.
Vehicle does not decelerate by engine brake when changing selector lever from ' D " to " 2 's range with accelerator pedal released.) AT- 78
Diagnostic Procedure 16
(SYMPTOM: Vehicle does not start from 0_{1} on Cruise test - Part 2.) AT- 79
Diagnostic Procedure 17(SYMPTOM: A/T does not shiff from D_{4} on D_{3} when changing overdrive switchto "OFF' position.)ATw 79
Diagnostic Procedure 18
(SYMPTOM: A/T does not shifi from D_{3} on 2_{2} when changing selector lever from " D " to " 2 " range.) AT~ 80
Diagnostic Procedure 19
(SYMPTOM: A/T does not shift from 2_{2} to λ_{1} when changing selector lever from " 2 " to " 1 " range.) AT- 80
Diagnostic Procedure 20
(SYMPTOM: Vehicle does not decelerate by engine brake when shifting from$2_{2}\left(1_{2}\right)$ to 1_{1}.)AT- 80
Electrical Components inspection AT- 81
Final Check AT- 88
Symptom Chart AT- 93

How to Perform Trouble Diagnoses for Quick and Accurate Repair

Preliminary Check

A/T FLUID CHECK

Fiuid leakage check

1. Clean area suspected of leaking, - for example, mating surface of converter housing and transmission case.
2. Start engine, apply foot brake, place selector lever in "D" range and wait a few minutes.
3. Stop engine.
4. Check for fresh leakage.

Fluid condition check

Fluid color	Suspected problem
Dark or black with burned odor	Wear of frictionat material
Milky pink	Water contamination - Road water entering through filier tube or breather
Varnished fluid, light to dark	
brown and tacky	Oxidation - Over or under tilling

Fluid level check

Refer to section MA.

ROAD TESTING

Description

- The purpose of this road test is to determine overall performance of automatic transmission and analyze causes of problems.
- The road test consists of the following three parts:

1. Check before engine is started
2. Check at idle
3. Cruise test

TROUBLE DIAGNOSES

Preliminary Check (Cont'd)

- Betore road test, familiarize yourself with all test procedures and items to check.
- Conduct tests on all items. Troubleshoot items which check out No Good after road test. Refer to "Self-diagnosis" and "Diagnostic Procedure".

TROUBLE DIAGNOSES

Preliminary Check (Cont'd)

SA77B88

R.H.D. model

1. Check before engine is started

Does A/T check lamp come on No Go to Diagnostic Procedure 1. for about 2 seconds?

Does A/T check lamp flicker for about 8 seconds?

Perform self-diagnosis.

- Refer to SELFwDIAGNOSIS

PROCEDURE and note N.G.
items.

TROUBLE DIAGNOSES

Preliminary Check (Cont'd)

2. Check at idie

TROUBLE DIAGNOSES

Preliminary Check (Cont'd)

Move selector lever to " N "
range.

9

Brake pedal

For several meonds
SAT799A

TROUBLE DIAGNOSES

Preliminary Check (Cont'd)

3. Crulse test

(E) With CONSULT

- Using CONSULT, conduct a cruise test and record the result.
- Print the result and ensure that shifts and lockuups take place as per "'Shift Schedule."
- Check all items isted in Parts 1 through 3 .

CONSULT setting procedure

1. Turn off ignition switch.
2. Connect "CONSULT' to diagnostic connector. (Diagnostic connector is located in left dash side panel.)
3. Turn on ignition switch.
4. Touch "START".
5. Touch " A / T ".

Preliminary Check (Cont'd)

7. Touch "SETTING" to set recording condition.
8. Touch "LONG TIME" and "ENTER" key.
11. When performing cruise test, touch "RECORD".
6. Touch '"DATA MONITOR".
9. Go back to SELECT MONITOR ITEM and touch "MAIN SIGNALS'.
10. Touch "START".

SAT2g9c
 ECl :MFUT
MaIn StGHols

SATZ日GC

Preliminary Check (Cont'd)

16. Check the monitor data printed out.
17. Continue cruise test part 2 and 3.

SAT300C
12. After finishing cruise test part 1, touch "STOP".
13. Touch "DISPLAY".
15. Touch "PRINT" again.
14. Touch "PRINT".
again

Preliminary Check (Cont'd)

Without CONSULT

- Throttle position can be controlled by voltage across terminals (3) and (3) of A/T control unit.

TROUBLE DIAGNOSES

Preliminary Check (Cont'd)

Cruise test - Part 1

E

Warm up engine untif engine oil and A.T.F. reach operating temperature after vehicle has been driven approx. 10 minutes.
A.T.F. operatiag temperature: $50 \sim 80^{\circ} \mathrm{C}\left(122 \cdot 176^{\circ} \mathrm{F}\right)$

Set overdrive switch in "ON" position.

3

Move selector lever to "P" range.

Accelerate vehicle to halt throttle.

Preliminary Check (Cont'd)

9

Yes

TROUBLE DIAGNOSES

Preliminary Check (Cont'd)

Preliminary Check (Cont'd)

Preliminary Check (Cont'd)

Cruise test - Part 3

Set overdrive swith in "OFF" position while criving in O_{4} tange.

TROUBLE DIAGNOSES

Preliminary Check (Cont'd)

TROUBLE DIAGNOSES

Preliminary Check (Cont'd)

Vehicle speed when shifting gears
RE4R01A

Throtele position	Vehicle speed km / h (MPH$)$					
	D, $\rightarrow \mathrm{D}_{2}$	$\mathrm{D}_{2} \rightarrow \mathrm{D}_{3}$	$\mathrm{D}_{3} \rightarrow \mathrm{D}_{4}$	$\mathrm{D}_{4} \rightarrow \mathrm{D}_{3}$	$\mathrm{D}_{3} \rightarrow \mathrm{D}_{2}$	$\mathrm{D}_{2} \rightarrow \mathrm{D}_{\mathrm{f}}$
Full finrotte	$\begin{aligned} & 50-54 \\ & \{3:-34\} \end{aligned}$	$\begin{aligned} & 107-115 \\ & (65 \sim 71) \end{aligned}$	$\begin{gathered} 166-178 \\ (103-109) \end{gathered}$	$\begin{gathered} 161-169 \\ (100-105) \end{gathered}$	$\begin{aligned} & 97-505 \\ & (60-65) \end{aligned}$	$\begin{gathered} 44-48 \\ \{27 \cdot 30) \end{gathered}$
Half throttle	$\begin{gathered} 45 \cdot 49 \\ \{28 \cdot 30\} \end{gathered}$	$\begin{gathered} 89-89 \\ (52-55) \end{gathered}$	$\begin{aligned} & 119-127 \\ & (74-79) \end{aligned}$	$\begin{gathered} 80-88 \\ (50-55) \end{gathered}$	$\begin{gathered} 33-39 \\ (21-24) \end{gathered}$	$\begin{aligned} & 10-14 \\ & (6-9) \end{aligned}$

RE4R03A

Throttle position	Vehicte speed km/h (MPH)					
	$\mathrm{D}, \rightarrow \mathrm{D}_{2}$	$D_{2}+D_{3}$	$\mathrm{D}_{5} \rightarrow \mathrm{D}_{4}$	$\mathrm{O}_{4} \rightarrow \mathrm{D}_{3}$	$\mathrm{D}_{2} \rightarrow \mathrm{D}_{2}$	$\mathrm{D}_{2} \rightarrow \mathrm{D}_{1}$
Fali throtile	$\begin{gathered} 68-72 \\ (42-45) \end{gathered}$	$\begin{aligned} & 120-128 \\ & (75-80) \end{aligned}$	$\begin{gathered} 183-193 \\ (114-120\} \end{gathered}$	$\begin{gathered} 177-187 \\ \{110+116\} \end{gathered}$	$\begin{aligned} & 111+1+9 \\ & (69-74) \end{aligned}$	$\begin{gathered} 47-51 \\ (29-32) \end{gathered}$
Half throttle	$\begin{gathered} 47-51 \\ (29-32) \end{gathered}$	$\begin{gathered} 89-95 \\ (55-59) \end{gathered}$	$\begin{aligned} & \$ 36-144 \\ & (85 \cdot 89) \end{aligned}$	$\begin{aligned} & 118-126 \\ & (73-78) \end{aligned}$	$\begin{gathered} 79 \cdot 85 \\ (49 \cdot 53) \end{gathered}$	$\begin{aligned} & 10-14 \\ & (6-9) \end{aligned}$

Vehicle speed when performing and releasing lock-up
RE4R01A

Throtte position	O.D. switch [Shitit range]	Vehicle speed km/h (MPH)	
		Lock-up "ON"	Lock-up 'OFF'
Fuit throttie	$\begin{gathered} \mathrm{ON} \\ {\left[\mathrm{D}_{4}\right]} \end{gathered}$	$\begin{gathered} 167-175 \\ (104-109) \end{gathered}$	$\begin{gathered} 161-169 \\ (100-105) \end{gathered}$
	$\begin{aligned} & \mathrm{OFF} \\ & {\left[\mathrm{D}_{3}\right]} \end{aligned}$	$\begin{aligned} & 107-115 \\ & \{66-71\} \end{aligned}$	$\begin{aligned} & 97-105 \\ & (60-65) \end{aligned}$
Half torottle	$\begin{aligned} & O N \\ & {\left[D_{4}\right]} \end{aligned}$	$\begin{aligned} & \ddagger 20-128 \\ & (75-80) \end{aligned}$	$\begin{gathered} 84-92 \\ (52-57) \end{gathered}$
	$\begin{aligned} & \text { OFF } \\ & {\left[D_{3}\right]} \end{aligned}$	$\begin{gathered} 91-99 \\ \{57-62\} \end{gathered}$	$\begin{gathered} 86-84 \\ (53-58) \end{gathered}$

RE4R03A

Throttle position	O.D. switch [Shift range]	Vehricfe speed km/h (\%APH)	
		Lock-lip 'ON'	Lock-up "OFF"
Fulf tirottle	$\begin{aligned} & \mathrm{ON} \\ & {\left[\mathrm{D}_{4}\right]} \end{aligned}$	$\begin{gathered} 184-192 \\ (114-119) \end{gathered}$	$\begin{gathered} 178-186 \\ (111-116) \end{gathered}$
	$\begin{aligned} & O F F \\ & {\left[D_{3}\right]} \end{aligned}$	$\begin{aligned} & 120+128 \\ & \{75-80\} \end{aligned}$	$\begin{aligned} & \ddagger \uparrow-119 \\ & (69-74\} \end{aligned}$
Haff throtte	$\begin{aligned} & \mathrm{ON} \\ & {\left[\mathrm{O}_{4}\right]} \end{aligned}$	$\begin{aligned} & 136-144 \\ & (85-89) \end{aligned}$	$\begin{aligned} & \{17-125 \\ & \{73-78) \end{aligned}$
	$\begin{aligned} & \mathrm{OFF} \\ & {\left[\mathrm{D}_{3}\right]} \end{aligned}$	$\begin{gathered} 91-99 \\ (57-62) \end{gathered}$	$\begin{gathered} 86-94 \\ \{53-58\} \end{gathered}$

Preliminary Check (Cont'd)

Shift schedule (Overdrive ON) - RE4R01A

Shift schedule (Overdrive OFF) - RE4R01A

Preliminary Check (Cont'd)

Shift schedule (Overdrive ON) — RE4R03A

Shift schedule (Overdrive OFF) - RE4R03A

Diagnosis by CONSULT

nOtice

1. The CONSULT electrically displays shift timing and lock-up timing (that is, operation timing of each solenoid). When a noticeable time difference occurs between shift timing which is manifested by shift shock and the CONSULT display, mechanical parts (except solenoids, sensors, etc.) are considered to be malfunctioning. Check mechanical parts using applicable diagnostic procedures.
2. Shift schedule (which implies gear position) displayed on CONSULT and that indicated in Service Manual may differ slightly. This occurs because of the following reasons:

- Actual shift schedule has more of less tolerance or allowance,
- Shift schedule indicated in Service Manual refers to the point where shifts starts, and
- Gear position displayed on CONSULTT indicates the point where shifts are completed.

3. Shift solenoid " A " or " B " is displayed on CONSULT at the start of shifting while gear position is displayed upon completion of shifting (which is computed by A/T control unit).

TROUBLE DIAGNOSES
Diagnosis by CONSULT (Cont'd) DATA MONITOR APPLICATION

Iterm	Application
Vehicle speed sensor 1 (A/T)	X
Vehicle speed sensor 2 (meter)	x
Throttle sensor	x
Fluid temperature sensor	x
Battery voltage	x
Engine rom	x
Selector lever switch (O.D. Switch)	x
A.S.C.D. - cruise signal	x
A.S.C.D. - O.D. cet signal	x
Kickdown switch	x
Power shift switch	-
Idle switch	x
Full throttle switch	x
Shift solenoid A	x
Shift solenoid B	x
Overrun clutch solenoid	x
'Shift solenoid A (teedback)	x
${ }^{*}$ Shift solenold B (feedback)	x
- Overrun ciutch solenoid (feedback)	x
Hold mode switch	-
1 range switch	x
2 range switch	x
D range switcht	x
N range switch	x
A range switch	x
Gear position	x
Rafge position	x
Vehicle speed	x
Throttle opening	x
Line-pressure solenoid	x
Lock-tup solenoid	x

TROUBLE DIAGNOSES

Dlagnosis by CONSULT (Cont'd)

DATA ANALYSIS

Item	Oisplay	Condition
Lock-up duty	$\begin{gathered} \text { Approximately } 4 \% \\ \vdots \\ \text { Approximately } 94 \% \end{gathered}$	Lock-up "OFF" \downarrow Lock-up "ON"
Line pressure duty	Approximately 29\% Approximately 94%	Low line-pressure (Small throttle opening) 1 High Iine-pressure (Large throttle opening)
Throtie sensor	Approximately 0.5 V	Fulfy-closed throttle
	Approximately 4 V	Fally-open throttle
Finid temperature sensor	Approximately 1.5 V \downarrow Approximately 0.5 V	$\begin{gathered} \text { Cold }\left[20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)\right] \\ \vdots \\ \text { Hot }\left[80^{\circ} \mathrm{C}\left(176^{\circ} \mathrm{F}\right)\right] \end{gathered}$

Gear position	1	2	3	4
Shlft solenoid A	ON	OFF	OFF	ON
Shift solenoid B	ON	ON	OFF	OFF

A/T Electrical Parts Location

L.H.D. MODEL

TROUBLE DIAGNOSES

A/T Electrical Parts Location (Cont'd)

R.H.D. MODEL

Circuit Diagram for Quick Pinpoint Check

SATS01D

TROUBLE DIAGNOSES

Wiring Dlagram

L.H.D. model

WIring Diagram (Cont'd)

Wiring Diagram (Cont'd)

R.H.D. MODEL

TROUBLE DIAGNOSES

Wiring Dlagram (Cont'd)

Self-diagnosis

self-diagnostic procedure (((ith consult)

1. Turn on CONSULT.
2. Touch "A/T".
3. Touch "SELF-DIAGNOSIS". CONSULT performs REAL-TIME SELF-DIAGNOSIS.

TROUBLE DIAGNOSES

Self-diagnosis (Cont'd)

SELF-DIAGNOSTIC PROCEDURE

SATAOIC

Does A/T check lamp come on No Go to Diagrostic Procedure 1. for abott 2 seconds?

E)

Move selector lever to " 2 '"
range.

TROUBLE DIAGNOSES

Self-diagnosis (Cont'd)

Self-diagnosis (Cont'd)

JUDGMENT OF SELF-DIAGNOSIS CODE

A/T check lamp	Damaged circuit
Al judgment flickers are same. Selfaliagnosis start	All circuits that can be comitimed by self-diagnosis are O.K.
Ist judgment flicker is longer than others.	Revolution sensor circuit is short-circuited or discomected.
2nd judgment ficker is longer than others.	Speed sensor circuit is short-circuited or disconnected.
3rd iudgment ficker is longer than others.	Throttle sensor circuit is short-circuited or disconnected.

$t_{1}=2.5$ seconds

TROUBLE DIAGNOSES
Self－diagnosis（Cont＇d）

A／T check lamp	Damaged circuit
4th ludgment flicker is longer than others． Salf－diagnosis start	Shift solenold A circuit is short－circuited or disconnected． Go to shift solenoid A circuit check．
5 th judgment 排cker is longer than others．	Shift solenoid B circuit is short－circuited or disconnected． Go to shift solenoid B clrcuit check．
6th judgment ficker is longer than others．	Overrun cilutch solenoid circuit is short－circlited or discon－ nected． Overran clutch solenoid Go to overrun clutch solenoid circuit check．
7th judgment ficker is longer than others．	Lock－up solenoid circuit is short－circuited or disconnected．

Self-diagnosis (Cont'd)

A/T check lamp	Damaged circuit
gth judgment 非icker is longer than others. Self+diagnosis start	Fluid temperature sensor is disconnected of A/T control unit power source circuit is damaged. Go to tilud temperature sensor and A/T control unit power source circuil check.
Gth gudgment filcker is longer than others.	Engine revolution signal circuit is short-circuited or disconnected. Go to engine revolution signal circuit check. SAT973B
10th judgment flicker is ionger than others.	Line pressure solenoid circuit is short-circuited or disconnected. Go to Ine pressure solenold circuit check.
Fickers as shown below.	Battery power is low. Battery has been disconnected for a long time. Battefy is connected conversely. (When reconnecting A / T control unit connectors. -T. This is not a problem.)

[^8]TROUBLE DIAGNOSES
Self-diagnosis (Cont'd)

A/T check lamp	Damaged circuit
Does not come on.	Inhibitor switch, overdrive switch, kickdown switch or idle switch cifcuit is disconnected or A/T control unit is damaged. Go to inhibitor, overdrive, kickdown and Idie switch circait checks.

TROUBLE DIAGNOSES

Self-diagnosis (Cont'd) REVOLUTION SENSOR CIRCUIT CHECK

TROUBLE DIAGNOSES

A

Self-diagnosis (Cont'd) SPEED SENSOR CIRCUIT CHECK

A

2.

Select 'E.C.U. INPUT SIGNALS'
Read out the value of 'CAR SPEED SENSOR
2 " while driving.

- Check the value changes according to driving speed.

OR
Check voltage between A/T control unit terminal (3) and ground while driving at 2 to 3 km / h (1 to 2 APH H) for 1 m (3 ft) or more.
Vollage: Varies from 0 V to 5 V

Periom seli-diagnosis again after driving for a while.

1. Perform A/T contfol unit input/output signal inspection.
2. If N.G., recheck A/T control unit pin terminals for damage or connection of A/T control unit harness connector.

Self-diagnosis (Cont'd)

A

Setect "E.C.U. INPUT: SIGNALS".

- Read out the value of "THAOTTLE SENSOR"
Voltage:
Fully-closed throttie:
Approximately
0.5 V

Fully-open throttle:
Approximately
4 V
OR
Check voltage between
A/T control unit terminals (3) and (3) while accelerator pedal is depressed slowly.

Voltage:

Fully-closed throttle: Approximately 0.5 V

Fulty-open throttle: Approximately 4V (Voltage rises gradually in response to throttie valve opening.)

Self-diagnosis (Cont'd) SHIFT SOLENOID A CIRCUIT CHECK

A

CHECK GROUND CIRCUIT.

2. Disconnect terminal cord assembly connector in engine compartment.
3. Check resistance between terminal (6 and ground.
Resistance: 20-40
N.G.

1. Remove contro valve assembly. - Fieter to "ON VEHICLE SERVICE".
2. Check the following items.

- Shitt solenoid A - Reter to "Electrical Components inspection".
- Harness continuity of terminal cord assembly

B OK.
CHECK POWER SOURCE CIRCUIIT.

$\xrightarrow{\text { N.G. }}$
Repalr or teplace harness between A/T control unit and terminal cord assembly.
2. Disconnect A/T control unit connector.
3. Check resistance between terminal (0) and A/T control unit terminal (6).
Aesistance:
Approximately on
4. Reinstall any part removed.

1. Perform A / T control tunit inputfoutpat signal inspection.
2. If N.G., recheck A/T control unit pin terminals for damage or connection of A/T control unit harness connector.

A

\$Aㅍ324C

Seli-diagnosis (Cont'd) SHIFT SOLENOID B CIRCUIT CHECK

A

CHECK GROUND CIRCUIT.

2. Disconnect terminal cord assembly connector in engine compartment.
3. Check resistance between terminal (5 and ground.
Resistance: 20-408
N.G. $\stackrel{\square}{\square}$

1. Remove control valve assernbly. - Refer to "ON-VEHICLE SERVICE"
2. Check the following items.

- Shift solenoid B - Refer to "Electrical Components inspection".
- Harness continuity of terminal cord assembly

E O.K
CHECK POWER SOURCE CIRCUIT.
1.

2. Disconnect A/T control unit connector.
3. Check resistance between terminal (7) and A/I control unit terminal (7).
Resistance:
Approximately 0Ω
4. Reinstall any part removed.

TROUBLE DIAGNOSES

Self-diagnosis (Cont'd)

Self-diagnosis (Cont'd)

LOCK-UP SOLENOID CIRCUIT CHECK

A

2. Disconnect terminal cord assembly connector in engine compartment.
3. Check resistance between terminal (5) and ground. Resistance: 10-20
B
CHECK POWER SOURCE CIRcuit.

2. Disconnect A / T control unit connector.
3. Check resistance between terminal (s) and A/T control unit terminat (${ }^{\text {b }}$).

Resistance:

Approximately 0Ω
4. Reinstall any part removed.

1. Perform A/T control unit inpufoutput signal inspection.
2. It N.G., recheck A/T control unit pin terminals for damage or connection of A/T control unit harness connector.

TROUBLE DIAGNOSES

Self-diagnosis (Cont'd)

AAT972B

FLUID TEMPERATURE SENSOR CIRCUIT AND A/T CONTROL UNIT POWER SOURCE CIRCUIT CHECKS

4

CHECK ATT CONTROL UNIT POWEA SOURCE.
1.

2. Check voltage between A/T control unit terminals (4), (9) and ground.
Battery voltage should exist.
N.G. Check the following items.

- Harness continuity between Ignition switch and ATT control unts
- Ignition switch and fuse
- Refer to section EE .

N.G.	1. Hemove control valve cover. 2. Check the following items. -
- Refer to "Electrical Com- ponents inspection". - Harness continuity of terminal cord assembly	

2. Disconnect terminal cord assembly connector in engine compartment.
3. Cneck resistance between terminals (3) and (35) when A / T is cold.

Peslstance:

Cold [20 $0^{\circ} \mathrm{C}\left(60^{\circ} \mathrm{F}\right)$ I
Approximately $2.5 \mathrm{k} \Omega$
4. Reinstall any part removed.

TROUBLE DIAGNOSES

Self-diagnosis (Cont'd)

TROUBLE DIAGNOSES

Self-diagnosis (Cont'd)

ENGINE REVOLUTION SIGNAL CIRCUIT CHECK

SAT331C

Self-diagnosis (Cont'd)

CUIT.

Repair or replace harness between AT control uniz (1) and terminal cord assembly.
2. Check resistance between terminal (1) and A/T control unit terminal (1).
Resistance:
Approximately 0Ω
3. Reinstall any part removed.

1 | termina! (1) and A/T control |
| :--- |
| unit terminal (2). |
| Resistance: $11.2-12.89$ |

N.G. 1. Remove control valve assem* bly. - Refer to "ON-VEHICLE SERVICE".
2. Check the following items.

- Line pressure solenoid - Refer to "Electrical Components Inspection'.
- Harness continusty of terminal cord assembly

2. Disconnect Aft control unit connector.
3. Check resistance between ent unit terminal (2)
Resistance: 11.2-12.8S

- Dropping resistor - Refer to "Electrical Components Inspection".
- Harness continuity between ATT controf unit (2) and terminat cord assembly

1. Perform A/T control unit input/output signal inspection. 2. If N.G., recheck A / T control unit pin terminals for damage of connection of A/T control unit harness connector.

Self-diagnosis (Cont'd)

SAT334C

INHIBITOR, OVERDRIVE, KICKDOWN AND IDLE SWITCH CIRCUIT CHECKS

A

CHECK INHIEITOA SWITCH CRRCUIT.

2.

-Select "EC.U. INPUT signals".

- Read out "R, N, D, 1 and 2 range switches" moving selector lever to each range.
- Check the selector tever position is indicated properly.

OR

Check voltage between
A/T control unit terminals
(96), (9), (1), (19), (6) and
ground white moving se-
lector lever through each
range.
Voltage:
B. Battery yoltage

O: OV

O.K.

Self-diagnosis (Cont'd)

E

SAT335C

和 A/T control unit terminal (30) and ground when overdrive switch is in "ON" position and in "OFF' position.

Switeh position	Voltage
ON	
OFF	1 V or fess

O.K.

TROUBLE DIAGNOSES

Seli-diagnosis (Cont'd)

TROUBLE DIAGNOSES

Self-diagnosis (Cont'd)

SAT33BC

INSPECTION END

Dlagnostic Procedure 1

SYMPTOM: A/T CHECK lamp does not come on for about 2 seconds when turning ignition switch to "ON".

11

CHECK A/T CONTROL UNIT POWER SOUACE.

2. Check voltage between A/T controt unit terminals (4), () and ground.
Battery voilage should exisi.
2
CHECK ATT CONTROL UNIT GROUND CIRCUIE.

Check harness continuity between A/E control unit and ground.

Check the following items.

- Harness continuity between ignition switch and A/T control unit.
- Ignition switch and fuse Refer to section EL .
N.G.

Check the following items.
A/t check lamp
Hanness continuity between
ignition switch and A/T check
lamp
Harness continuity between
A/T check lamp and A/T con
trol unit

Resistance: 50-1000
4. Meinstall any part removed.

2. Disconnect A/T control uniz connector.
3. Check resistance between A / T control unit terminals (i), (9) and ground.
Resistance:
Approximately 0n
3 O.K
CHECK LAMP CIRCUIT.
2. Disconnect A / T control unit connector.
3. Check resistance between A / T control unit terminals (3) and (4)

Resistance:
 trot unit

Diagnostic Procedure 3

SYMPTOM: Vehicle moves when it is pushed forward or backward with selector tever in "P" range.

II

Check parking components.

- Refer to "ON-VEHICLE SERVICE'.
$\xrightarrow{\text { N.G. }}$

\square
INSPECTION END

Diagnostic Procedure 4
SYMPTOM: $\begin{aligned} & \text { Vehicle moves forward or backward when } \\ & \text { selecting " } \mathrm{N} \text { " range. }\end{aligned}$

1. Remove oil pan. 2. Check A/T fluid condition.	$\xrightarrow{\text { N.G. }} \quad \begin{aligned} & \text { 1. Disassemble A/E. } \\ & \text { 2. Check the following items. }\end{aligned}$
O.K.	- Forward ciutch assembly - Overrun clutch assembly - Heverse ciutch assembly - Accumulator piston D
Check again.	$\xrightarrow{\text { N.G. 1. Perform A/F control unit in- }}$ putoutput signal inspection. 2. If N.G., recheck A/T control unit pin terminals for damage or connection of A / T control unlt harness connector.
OK.	
INSPECTION END	

SAT638A

Diagnostic Procedure 7

SYMPTOM: Vehicle does not creep forward when selecting " D ", " 2 " or " 1 " range.

11

Check stall revolution with se lector lever in "D" fange.

- Refer to "STALL TESTHA".

Check line pressure at idle with selector lever in "D" range.
— Refer to "PRESSURE TESTING".

1. Remove ail pan.
2. Check ATT futud condition.

3. Perform A/T control unis input/output signal inspection.
4. If N.G., recheck ATT control unit pin terminals for damage or connection of ATT control unit hamess connector.

Diagnostic Procedure 8

SYMPTOM: Vehicle cannot be started from D_{1} on Cruise test - Part 1.

Check line pressure at stall point with selector lever in "D" range. - Refer to "PRESSURE TESTING".

2. Check the following items.

Remove control valve assembly. - Reter to "ON VEHICLE SERVICE".

- Shift valve A
- Shift valve B
- Shift solenoid A
- Shift solenoid B
- Pilot valve
- Pilot filter

3. Disassemble A/T.
4. Check the following items.

- Forward clutch assembly
- Forward one-way clutch
- Low one-way clutch
- High clutch assembly
- Torque converter
- Oll pump assembly

Diagnostic Procedure 9

SYMPTOM: A/T does not shift from D_{1} to D_{2} at the specified speed.
 A/T does not shift from D_{4} to D_{2} when depressing accelerator pedal fully at the specified speed.

1. Remove control valve. Refer to 'ON-VEHICLE SERVICE".
2. Check the following items.

- Shift valve A
- Shift solenoid A
- Pilot valve
O.K.

3. Disassembie ATT.
4. Check the following items.

- Servo piston assembly
- Brake band
- Oll pump assembly

Diagnostic Procedure 10

SYMPTOM: A/T does not shift from D_{2} to D_{3} at the specified speed.

 to section EF \& EC.

Repair or replace throtile sert sor.

Diagnostic Procedure 11

SYMPTOM: \quad A/T does not shift from D_{3} to D_{4} at the specified speed.
 revolution sensor, speed sensor or fluid temperature sensor cirm cuik after cruise test?

Check throttle sensor. - Pefer to section EF \& EC.

1

SAFB14C

Diagnostic Procedure 12

SYMPTOM: A/T does not perform lock-up at the

 specified speed.11

Check throttle sensor. - Refer to section EF \& EC.
o.

1. Remove control valve. - Refer to "ON-VEHICLE SERVICE".
2. Check the following items.

- Lock-up control valve
- Shuttle shift valve 0
- Torque converter relief valve
- Lock-up solenoid
- Pilot valve
- Pilot filter

INSPECTION END
N.G.

Repair or replace damaged parts.
Repair or replace throttle sensar.
\qquad

1. Perform A/T control unit inpitfoutput signal inspection.
2. If N.G., recheck A/T control unit pin terminals for damage or connection of A / T control unit harness connector.

Diagnostic Procedure 13

SYMPTOM: A/T does not hold lock-up condition for more than $\mathbf{3 0}$ seconds.

\square

Diagnostic Procedure 14

SYMPTOM: Lock-up is not released when accelerator

 pedal is released.

1

Engine trake

Diagnostic Procedure 15

SYMPTOM: Engine speed does not return to idle smoothly when A/T is shifted from D_{4} to D_{3} with accelerator pedal released.
Vehicle does not decelerate by engine brake when changing overdrive switch to "OFF" position with accelerator pedal released.
Vehicle does not decelerate by engine brake when changing selector lever from " D " to " 2 " range with accelerator pedal released.

4

1. Perform A/T control unis input/outpui signal inspection.
2. If N.G., recheck A/T control unit pin terminals for damage or connection of A/T contro: unit harness connector.

Diagnostic Procedure 16

SYMPTOM: Vehicle does not start from D_{1} on Cruise test - Part 2.
11

Diagnostic Procedure 17

SYMPTOM: A/T does not shift from D_{4} to D_{3} when changing overdrive switch to "OFF" position.

Diagnostic Procedure 18

SYMPTOM: A/T does not shift from D_{3} to $\mathbf{2}_{2}$ when changing selector lever from " D " to " 2 " range.

Diagnostlc Procedure 19

SYMPTOM: A/T does not shift from $\mathbf{2}_{\mathbf{2}}$ to $\mathbf{1}_{1}$ when changing selector lever from " 2 " to " 1 " range.

Dlagnostic Procedure 20

SYMPTOM: Vehicle does not decelerate by engine brake when shifting from $\mathbf{2}_{2}\left(\mathbf{1}_{2}\right)$ to $\mathbf{1}_{1}$.

Electrical Components inspection

INSPECTION OF A/T CONTROL UNIT

- Measure vottage between each terminal and terminal (B) or (88) by following "A/T CONTROL UNIT INSPECTION TABLE".
- Pin connector termina! tayout.

TROUBLE DIAGNOSES
Electrical Components Inspection (Cont'd)
AIT CONTROL UNIT INSPECTION TABLE
(Data are reference values.)

Terminal No.	Item		Condition	fudgment standard
\ddagger	Line pressure solenoid		When accelerator pedal is released after warming up engine.	1.5-2.5V
			When accelerator pedal is depressed futly after warming up engine.	0.5 V or less
2	Line pressure solenoid (with dropping resistor)		When accelerator pedal is released after warming up engine.	5-14V
			When accelerator pedal is depressed fully after warming up engine.	0.5 V or less
3	A/T check lamp		When A/T check lamp is on.	1 V or less
			When A/T check lamp is not on.	Battery voltage
4	Power source		When ignition switch is turned to "ON".	Battery voltage
			When igntion switch is turned to "OFF".	1 V or less
5	Lock-up solenoid		When Art is performing lock-up.	8-15V
			When A / T is not periorming lock-up.	1V or less
6	Shift solenoid A		When shift solenoid A is operating. (When driving in " D_{4} " or " D_{4} ".)	Battery voltage
			When shitt solenoid A is not operating. (When driving in " D_{2} " or " D_{3} ".)	1 V or less
7	Shift solenoid B		When shift solenoid B is operating. (When driving in " D_{1} " or " D_{2} ".)	Battery voltage
			When shift solenoid B is not operating. (When driving in " D_{3} " or " D_{4} ".)	1 V or less
8	Overrin clutch solenold		When timing solenoid is operating. (When driving in " D_{1} " or " D_{4} ".)	Battery volage
			When timing solenotd is not operating. (When driving in " D_{2} " or " D_{3} ".)	1V or less

TROUBLE DIAGNOSES
Electrical Components Inspection (Cont'd)

Terminal No.	Item	Condition		Judgment standard
9	Power source		Same as No. 4	
10^{+}	-		-	-
11	-		-	-
12	-		-	-
13	-		\cdots	-
14	Idle switch (in throttle valve switch)		When accelerator pedal is released after warming up engine.	8-15V
			When accelerator pedal is depressed atter warming up engine.	TV or less
15	Ground		-	-
	Inhibitor "1" range		When selector tever is set to " 1 " range.	Battery voltage
16	switch		When selector lever is set to other ranges.	1V or less
17	Inhibitor "2" range switeh		When selector lever is set to ' 2 ', range.	Battery voltage
			When selector lever is set to other ranges.	fV or less
18	Inhibitor " D " range		When setector fever is set to "D" range.	Battery voitage
	switch		When setector lever is set to other ranges.	1 V or less
19	inhibitor "N" or "pr" range switch		When selector lever is set to " N " range.	Battery votage
			When selector lever is set to other ranges.	¢V or less
20	inhibitor " R " range switch		When selector lever is set to " R " range.	Battery voltage
			When selector lever is set to other ranges.	N or tess
21	Full throtte switch		When accelerator pedal is depressed more than haff-way after warming up engine.	8-15V
			When accelerator pedal is released after warming up engine.	1V or less
22	-		-	\cdots

[^9]TROUBLE DIAGNOSES
Electrical Components Inspection (Cont'd)

Terminal Na .	Item	Condition		Judgment standard
23	Power source (Back-up)		When ignitian switch is turned to "OFF".	Battery voltage
			When ignition switch is turned to 'ON".	Battery voltage
24	Engine revolution signal		When engine is running at mole speed.	0.9 V
			When engine is running at $3,000 \mathrm{rpm}$.	Approximately 3.7 V
25	Revalution sensor (Measure in AC range)		When vehicle is cruising at $30 \mathrm{~km} / \mathrm{h}$ (19 MPH).	1 V or more Voltage rises gradually in response to vehicle speed.
			When vehitle is parked.	OV
26	-		-	-
27	Speed sensor		When vehicle is moving at 2 to 3 km / h (1 to 2 MPH) for 1 m (3 ft) or more.	Vary fromo to 5 V
28	-		-	-
29	-		\cdots	-
30	-		-	-
31	Throttle sensor (Power source)		-	4.5-5.5V
32	-		-	-
33	Fluid temperature sensor		When A.T.F temperature is $20^{\circ} \mathrm{C}$ ($68^{\circ} \mathrm{F}$).	Approximately 1.5 V
			When A.T.F. temperature is $80^{\circ} \mathrm{C}$ (176.F)	Approximately $0.5 \mathrm{~V}$
34	Throtte sensor		When accelerator pedal is depressed slowly after warming tip engine.	Fulty-closed throttle: Approximately 0.5 V Fully-open throttle: Approximateły 4 V
35	Throtle sensor (Ground)		-	-
36	\cdots		-	-
37	A.S.C.D. cfuise signal		When A.S.C.D. cruise is being performed. ("CPUISE" light comes on.)	Battery voltage
			When A.S.C.D. cruise is not being performed. ("CRUISE" light does not come on.)	1V or less

TROUBLE DIAGNOSES

Electrical Components Inspection (Cont'd)

Terminal No.	Item	Condition		Judgment standard
38	-		-	-
39	Overdrive switch		When overdrive swith is set in "ON" position.	Battery voltage
			When overdrive switch is set in "OFF" position.	1V or less
40	A.S.c.o. O.D. cut signal		When "ACCEL." set switch on A.S.C.D. cruise is released.	5-8V
			When "ACCEL"." set switch on A.S.C.D. cruise is applied.	JVor less
41	Kickdown switch		When accelerator pedal is released after warming up engine.	3-8V
			When accelerator pedal is depressed fully after warming fp engine.	1V or less
42	-		-	-
43	\cdots		-	-
44	-		-	-
45	-m		-	-
46	-		\cdots	-
47	\cdots		-	-
48	Ground		-	-

OVERDRIVE SWITCH

- Check continuity between two terminals.

O.D. switch position	Continuity
ON	No
OFF	Yes

TROUBLE DIAGNOSES

Electrical Components Inspection (Cont'd)

4. If N.G. on step 2, remove inhibitor switch from A/T and check continuity of inhibitor switch terminal. - Refer to step 1.
5. If O.K. on step 4, adjust inhibitor switch. -- Refer to "ON-VEHICLE SERVICE".
6. If N.G. on step 4, replace inhibitor switch.

REVOLUTION SENSOR

- For removal and instalation, refer to "ON-VEHICLE SERVICE'.
- Check resistance between terminals (1), (2) and (3),

Terminal No.		Resistance
(1)	(2)	$500-6500$
(3)	(3)	No continuity
(1)	(3)	No continuity

Electrical Components Inspection (Cont'd) FLUID TEMPERATURE SENSOR

- For removal and installation, refer to "ON-VEHICLE SERVICE'.
- Check resistance between two terminals while changing temperature as shown at left.

Temperature ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	Resistance
$20(68)$	Approximately $2.5 \mathrm{k} \boldsymbol{\prime}$
$80(776)$	Approximately $0.3 \mathrm{k} \Omega$

LOCK-UP SOLENOID

- For removal and installation, refer to "ON-VEHICLE SERVICE'".
- Check resistance between two terminals.

Resistance:
Lock-up solenoid 10-20

3-UNIT SOLENOID ASSEMBLY (Shift solenoids A, B and overrun clutch solenoid) AND LINE PRESSURE SOLENOID

- For removal and installation, refer to "ON-VEHICLE SERVICE',
- Check resistance between terminals of each solenoid.

Solenoid	Terminal No.		Resistance
Shift solenoid A	(3)		
Snift solenoid B	Ground	$20-40 \Omega$	
Overrun clutch solenoid	(3)	terminal	
Line pressure solenoid	(B)		$2.5-5 \Omega$

DROPPING RESISTOR

- Check resistance between two terminals.

Resistance: 11.2-12.8

TROUBLE DIAGNOSES

Final Check

STALL TESTING

Stall test procedure

1. Check A/T and engine fluid levels. If necessary, add.
2. Warm up engine until engine oil and A.T.F. reach operating temperature after vehicle has been driven approx. 10 minutes.
A.T.F. operating temperature:

$$
50-80^{\circ} \mathrm{C}\left(122-176^{\circ} \mathrm{F}\right)
$$

3. Set parking brake and block wheels.
4. Install a tachometer where it can be seen by driver during test.

- It is good practice to put a mark on point of specified engine rpm on indicator.

5. Start engine, apply foot brake, and place selector lever in " D " range.
6. Accelerate to wide-open throttle gradually while applying foot brake.
7. Quickly note the engine stall revoiution and immediately release throttle.

- During test, never hold throttle wide-open for more than 5 seconds.

Stall revolution:

$$
\begin{aligned}
& \text { 2,450-2,650 rpm (RE4RO1A) } \\
& 2,950-3,200 \mathrm{rpm} \text { (RE4R03A) }
\end{aligned}
$$

8. Shift selector lever to ' N ".
9. Cool off A.T.F.

- Run engine at idle for at least one minute.

10. Perform stall tests in the same manner as in steps 5 through 9 with selector lever in " 2 ", " 1 " and " R ", respectively.

TROUBLE DIAGNOSES

Final Check (Cont'd)

Judgment of stall test

TROUBLE DIAGNOSES

Final Check (Cont'd)

PRESSURE TESTING

- Location of line pressure test port
- Line pressure plugs are hexagon headed bolts.
- Always replace line pressure plugs as they are sell-sealing bolls.

Line pressure test procedure

1. Check A / T and engine fluid levels. If necessary, add.
2. Warm up engine untit engine oll and A.T.F. reach operating temperature after vehicle has been driven approx. 10 minutes.
A.T.F. operating temperature:
$50-80^{\circ} \mathrm{C}\left(122 \cdot 176^{\circ} \mathrm{F}\right)$
3. Install pressure gauge to line pressure port.

- D, 2 and 1 ranges -

Final Check (Cont'd)

4. Set parking brake and block wheels.

- Continue to depress brake pedal fully while line pressure test at stall speed is performed.

5. Start engine and measure line pressure at ide and stall speed.

- When measuring line pressure at stall speed, follow the stall test procedure.

Line pressure:

Engine speed rp\#		
	D, 2 and 1 zanges	R range
Idle	$\begin{gathered} 412-490 \\ (4.12-4.90 \\ 4.2-5.0,60-71\} \end{gathered}$	$\begin{gathered} 608-647 \\ (6.08-6.47 \\ 6.2-6.6,88-94) \end{gathered}$
Stall	$\begin{gathered} 1,020-1,098 \\ (10.20-10.98 \\ 10.4-11.2,148-159) \end{gathered}$	$\begin{gathered} 1,422-1,500 \\ (14.22-15.00 \\ 14.5-15.3,206-218) \end{gathered}$

TROUBLE DIAGNOSES

Final Check (Cont'd)

Judgment of Line pressure test

Judgment		Suspected parts
$\frac{\frac{0}{0}}{\frac{0}{4}}$	Line pressure is low in all ranges.	- Oil pump wear - Control piston damage - Pressure regulator valve or plug sticking - Spring for pressure regulator valve danaged - Fluid pressure leakage between oil strainer and pressure regulator valve
	Line pressure is low in particular range.	- Fiuid pressure leakage between manual valve and particular clutch - For example: If line pressure is low in " R " and " 1 " ranges but is normal in " D " and ' 2 ' range, fluid leakage exists at or around low $\&$ reverse brake circuit.
	Line pressure is high.	- Maf-adjustment of throtile seasor - Fluid temperature sensor damaged - Line pressure sotenoid sticking - Short circuit of line pressure solenoid circuit - Pressure modifier valve sticking - Pressure regulator valve or plug sticking
	Line pressure is low.	- Mal-adjustment of throttie sensor - Control piston damaged - Line pressure solenoid sticking - Short circitit of line pressure solenoid circuit - Pressure regtiator valve or plug sticking - Pressure modifier valve sticking - Pilot valve sticking

Symptom Chart

		$\xrightarrow{+}$ On vehicle \rightarrow -															
	Reference page (AT-)	$\begin{aligned} & 9, \\ & 15 \end{aligned}$	86	86	90	$\begin{aligned} & 87, \\ & 123 \end{aligned}$	87	87	$\begin{aligned} & 8 \\ & 87 \end{aligned}$	8	8	$\begin{aligned} & 106 . \\ & 118 \\ & \hline 18 \end{aligned}$	$\begin{aligned} & 137, \\ & 142 \end{aligned}$	$\begin{gathered} 144 . \\ 159 \\ \hline \end{gathered}$	$\begin{aligned} & 144, \\ & 153 \end{aligned}$	148	166
	Numbers are arranged in order of probability. Perform inspections starting with number one and working up. Circled numbers indicate that the transmission must be removed from the vehicle.																
67	Engine does not start in "N", "P" ranges.	2	3 1		.				.
67	Engine starts in range other fhan " N " and "P".	. 1	2	. .	-.			-	- .				.				
-	Transmission noise in "P" and "N" ranges.	1	3	45	2	- .	- .	,		(7)(6)	.				
67	Vehicle moves when changing into " P " range of parking gear does not disengage when shifted out of " P " range.	1	, .		.	- .	.	,	.			,	- .			.	(2)
68	Vehicte runs in "N" range.	t			4		(3).	(2).	(5)		
70	Vehicle win not run in "R" range (but runs in "D". "2" and "q" ranges). Clutch slips. Very poor acceferation.	1	.	.	2	4	3						(5) 6	(7)	(3)	(9).	.
-	Vehicle braked when shifting into " R " range.	12			3	5	4		.	.			. (6)	(8)	(9)	(7)	
*...	Sharp stock in shitting trom "N" to "D" range.	.	. 2	5	13	7	6		48	.		- .		(9)			
-	Vehicle wilt not rum in " D " and " 2 " ranges tbut rums in " 1 " and " R " range).	1						((2)	.	
71	Vehicle will not run in " D ". " 1 ". " 2 " ranges (but runs in "R" range). Clutth slips. Very poor acceleration.	1	-	,	. 2	4	3	- .	5	. .	.		(6) 7	89	. 10		.
-	Clatches or brakes slip somewhat in starting.	12	3		4	6	5		7		8	1302	(10)	(9)	.	(1).	
-	Excessive creep.		. .	- .	1.	- .	.						,	, .	.		
$\begin{gathered} 70 \\ 71 \\ 71 \end{gathered}$	No creep at all.	1.			2	3	-.	.				(6)5		(4)			
-	Failure to change gear from " D_{1} " to " D_{2} "	2	1	5		43			. \cdot		, .	, ,				. 6	
-	Failure to change gear from " D_{7} " to " D_{3} "	2	1	5	.	4	3				(6)			(7)	
-	Failure to change gear from ' D_{3} " to " Da_{4} ".	2	1	4		3	.		5		.	. .	- .			(6)	
$\begin{aligned} & 73 \\ & 74 . \\ & 75 \end{aligned}$	Too high a gear change point from " D ," to " D_{2} ", from ' D_{7} " to " D_{3} ", from " D_{3} " to " D_{4} "		1	2		3	4		.			.					
-	Gear change directly from " D_{1} " to " D_{3} " oc. curs.	1		.						2			.			(3)	
	Engine stops when shifting lever into " R ", "D'. '2" and "年".				1.	3		2				(9).					
-	Too sharp a shock in change from "D," to " D_{2} ".		1		- 2	4			5	3.						6	
-	Too shatp a shock in change from " D_{2} " to " D_{3} ".		1		2	4	.			- 3	-		(5)			(6)	

TROUBLE DIAGNOSES

	Feference page (AT-																
		$\begin{aligned} & 9 \\ & 95 \end{aligned}$	B6	86	90	$\begin{aligned} & 87 . \\ & \$ 23 \end{aligned}$	87	87	$\begin{aligned} & 8, \\ & 87 \end{aligned}$	8	8	$\begin{aligned} & 106 \\ & 188 \end{aligned}$	$\begin{gathered} 137 \\ 142 \end{gathered}$	$\begin{aligned} & \$ 44 . \\ & \$ 59 \end{aligned}$	$\begin{aligned} & 144, \\ & 153 \end{aligned}$	148	166
Reterence page (AT-)	Numbers are afranged in order of probability. Periorm inspections starting with number one and working up. Circled numbers ifllcate that the transmission must be removed from the venticle.																
-	Too sharp a shock in change from " $\mathrm{D}_{\boldsymbol{x}}$ " to " B_{2} ".		. f	. .	2	4	.	.	- .	, .	3	. ${ }^{\text {r }}$.	(6).	(5)	.
-	Almost no shock or clutches slipping in change from ' D_{1} " to " D_{2}.'.	1	. 2	.	3	5	.		, .	4	.	-	.	- .	- .	- (i)	.
س-	Almost no shock or stipplifg in change from " D_{2} " to " D_{2} ".	1	. 2	. .	3	5	- .	, .	,	4	.		6		- .	(7)	.
\cdots	Almost no shock or slipping in change from " D_{3} " to " D_{4} ".	1	2	.	3	5	- .		.		4	.	- (b)	(7)	.
	Vehicle braked by gear change from "D.'" to ' D_{2} ".	1	- .	- .	-	- .			-		(3)(4)		(5)	(3)	.
--	Vehicle braked by geaf change from " D_{2} " to " D_{3} ".	\pm			- .	.		-	- .	- .	.		(2)	,
-...	Vehicle braked by gear change trom " D_{3} " to " D_{4} ".	\%	.		.		- .	- .	, .				(4)	(3)	(2).	- .	,
\cdots	Maximum speed not attained. Acceleration poor.	1.	2	- .	- .	53	4	- .	- \cdot	- .	-	110	6 (7	- .	. .	9)8	.
-	Failure to change gear from " O_{4} " to " D_{3} ".	1 .	. 2	- .	- .	64	. 5	. 3	- .	- .	- .	. .	, .	. .	(8).	(7).	.
-	Failure to change gear trom " D_{3} " to ${ }^{\prime} \mathrm{D}_{2}$ " or from ' D_{4} " to " D_{2} ".	1	. 2	- .	. .	53	4		. .			- .	(6)	, .		(7)	.
\cdots	Failure to change gear from " D ," to " D " or from " $D_{3}{ }^{\prime \prime}$ to " D_{1} ".	1	. 2	- .	.	53	4		. .			,	(7)	- .	(6)	(8)	-
-m	Gear change shock felt during deceleration by releasing acceferator pedal.		1		2	4	.	3	. .			.					-
-	Too high a change point from " D_{4} " to " D_{2} ", from " D_{3} " to " D_{2} ", from " D_{2} " to " D_{1} ".		1	2			- .		. .			- .	- .	- .	.		.
-	Kickdown does not operate when depressing pedal in " Q_{4} " within kickdown vehigle speed.		1	2	.	. 3	4					- .					.
\cdots	Kickdown operates or engine overruns when depressing pedal in " $\mathrm{D}_{\text {" }}$ beyond kicikdown vehicle speed limit.		. 2	1	. .	. 3	4.	- .		. .	- .	- .					-
-	Races exfremefy fast or slips in changing from ' D_{4} " to " D_{3} " when depressing pedal.	1	2	, .	. 3	5	4	-		- (6)	(7)			,
-	Races extremety fast or slips in changing from " $D_{4}{ }^{*}$ to " D_{z} " when depaessing pedal.	1	2	. .	. 3	65	4	-	(8)		- (7)	-
-	Races extremely fast of slips in changing from " D_{3} " to " D_{2} " when depressing pedal.	\ddagger	2		3	5.	4.	. .	6	7	- .	.	, 1	(9)		- (8)	.
-	Races extremely fast or ships in changing from " D_{4} " or " D_{3} " to " D ,"when depressing pedal.	1	2		. 3	5 .	, 4		- .					(6)(7)	- 8	- .	.
-	Vehicle will not run in any range.	12	.	- .	3	.	. 4	. .		- .	. .	9)(5)	. 6)	.	. .	(8) 7 (40
\cdots	Transmission noise in '"D', "2", "1" and "p" ranges.	1		,	- .	,	- .	- .		- .	. .	(2).	. .	-		- .	.

TROUBLE DIAGNOSES
Symptom Chart (Cont'd)

		4										1 - OFF vericl					
	Reference page (Ar-)	$\begin{aligned} & 9 \\ & 15 \end{aligned}$	86	86	90	$\begin{aligned} & 87 . \\ & 2,3 \end{aligned}$	87	87	$\begin{aligned} & \mathbf{B}_{1} \\ & 87 \end{aligned}$	8	8	$\begin{aligned} & 106 . \\ & 118 \end{aligned}$	$\begin{aligned} & 197, \\ & 142 \end{aligned}$	$\begin{aligned} & 144, \\ & 559 \end{aligned}$	$\begin{aligned} & 144, \\ & 153 \end{aligned}$	148	166
	Numbers are arranged 援 order of probability. Perform inspections starting with number one and working up. Circled numbers ind late that the transmission must be removed from the vehicle.																
80	Failure to change from " O_{3} " to " 2_{2} " when changing fever into " 2 " range.	7	12	.	. .	65	4	. 3		(3)	(8)	
-	Gear change from " $22^{\prime \prime}$ " to " 22_{3} " in "2" range.	-	1	, .	,	.	-.		- .				
80	Engine trake does not operate in "1" range.	- 2	13	4		65		7	.		- .		- .	,	(8).	(9)	.
-	Gear change from " 1, " to " 1_{2} " in "1" range.	2	1	.		. .			- .		-			. .			
-	Does not change trom " 1_{2} " to " 11 " in " 3 " range.		1	2		43	.	. 5	, .		.		.	, .	(6)	(7)	
-	Large shock changina from " $12_{2}^{\prime \prime}$ to " 1_{1} " in "1 " range.					\%						- .		.		(2)	
-	Transmission overheats.	1	3	.	24	6	5	.			. .	(14)	(8)(9)	(1i)	112	(10)10	.
-	A.T.F. shoots out during operation. White smoke emitted from exhaust pipe during operation.	\dagger						.			.	.	(2)3	(5)	(6)	(7)4	.
-	Offensive smell at fluid charging pipe.	1	.	.	- .	-	.	.	.			(2) 3	(4)	(7)	(9)	(9)6	
-	Torque converter is not locked up.		31	24	6	8		7	5			(9)		.			
-	Lock-up piston slip	1	2	, .	3	6	5	4	.			(1).		.			.
76	Lock-up point is extremely high or low.	.	1	2		4		3	-					.			.
-	Af does not shift to " D_{c} " when ariving with overdrive swith "ON".		2 t	3	. 8	64	- .	. 5	7						(10)	- (9)	.
-	Engine is stopped at "R"', "口", "2" and "1" ranges.	1	.			54	3	2	. .	- .		- .	, •	. .			.

Removal

- Remove exhaust tube.
- Remove fluid charging pipe from A/T assembly.
- Remove oil cooler pipe from A/T assembly.
- Remove control linkage from selector lever.
- Disconnect inhibitor switch and solenoid harness connectors.
- Remove speedometer cable from A/T assembly.
- Plug up openings such as the oll charging pipe hole, etc.
- Remove propeller shaft. - Refer to section PD.
- Insert plug into rear oil seal after removing propeller shaft.
- Be careful not to damage spline, sleeve yoke and rear oil seal, when removing propeller shaft.
- Remove starter motor.
- Remove gusset securing engine to A / T assembly.
- Remove bolts securing torque converter to drive plate.
- Remove the bolts by turning crankshaft.
- Support engine by placing a jack under oll pan.
- Do not place jack under oil pan drain plug.
- Remove transmission from engine.
- Support automatic transmission, while removing it.

Installation

- Drive plate runout

Maximum allowable runout:
$0.5 \mathrm{~mm}(0.020 \mathrm{in})$
If this runout is out of allowance, replace drive plate with ring gear.

- When connecting torque converter to transmission, measure distance " A " to be certain that they are correctly assembled.

Distance " A ":
RE4R01A
26 mm (1.02 in) or more
RE4R03A
25 mm (0.98 in) or more

- Install converter to drive plate.
- Reinstall any part femoved.
- After converter is installed to drive plate, rotate crankshaft several turns and check to be sure that transmission rotates freely without binding.

REMOVAL AND INSTALLATION

Installation (Cont'd)

- Tighten bolts securing transmission.

RE4RO1A

Bolt No.	Tightening torqute $\mathrm{N} \cdot \mathrm{m}(\mathrm{kg}-\mathrm{m}, \mathrm{f}-\mathrm{tb})$	Boit length " ℓ " mm (in)
1	39-49 (4.0-5.0, 29-36)	60 (2.36)
2	39-49 (4.0-5.0, 29-36)	50 (1.97)
3	39-49 (4.0-5.0, 29-36)	45 (1.77)
4	29-39 (3.0-4.0, 22-29)	25 (0.98)
5	29-39 (3.0-4.0, 22-29)	60 (2.36)
6	$39-49(4.0-5.0,29.36)$	65 (2.56)
7	$39.49(4.0-5.0,29-36)$	25 (0.98)
Gusset to engine	29-39(3.0-4.0. $22-29)$	20 (0.79)

RE4R03A

Bolt No.	Tightening torque $\mathrm{N} \cdot \mathrm{m}(\mathrm{kg}-\mathrm{m}, \mathrm{it}-\mathrm{lb})$	Bolt length " ℓ " $\mathrm{mm}(\mathrm{in})$
1	$39-49(4.0-5.0,29+36)$	60 (2.36)
2	$39-49(4.0-5.0,29-36)$	60 (2.36)
3	$39-49(4.0-5.0,29-36)$	65 (2.56)
4	29-39 (3.0-4.0, 22-29)	25 (0.98)
5	29-39 (3.0-4.0, 22-29)	60 (2.36)
6	39-49 (4.0-5.0.29-36)	65 (2.56)
7	39-49 (4.0-5.0, 29-36)	25 (0.98)
Gusset to engine	29-39 (3.0-4.0. 22-29)	20 (0.79)

- Reinstall any part removed.

- Check fluid level in transmission.
- Move selector lever through all positions to be sure that transmission operates correctly.
With parking brake applied, rotate engine at idling. Move selector lever through " N " to " D ", to ' 2 ", to " 1 " and to " R ". A slight shock should be felt by hand gripping selector each time transmission is shifted.
- Perform road test. - Refer to "ROAD TESTING".

RE4R01A

SAT940C

MAJOR OVERHAUL

RE4R03A

Apply recommended sealant
(Nissan genuine part: KPG10-00250) or equivatent.
(ATF) : Apply A.T.F.
푼(P) Apply petrotetm jelly
: Select with proper thickness.
in : Adjustment is zequited.
il pump housing cil seal (ATF)
1161.64
(6.2-6.5, 45 - 47)

$\mathrm{M}_{44} \cdot 59$ $44 \cdot 59$
$(4.5 \cdot 6.0 .33 \cdot 43)$

SATS41C

MAJOR OVERHAUL

Oil Channel - RE4R01A

MAJOR OVERHAUL

Oll Channel - RE4R03A

Locations of Needle Bearings, Thrust Washers and Snap Rings - RE4R01A

Locations of Needle Bearings, Thrust Washers and Snap Rings - RE4R03A

Ofter diameter of snap rings	
Itern number	Outer diameter min (in)
(2), (5)	164.0 (6.46)
(3)	176.0 [6.93)
(6)	172.0 (6.77)
Thrust wasters	
Item number	Color
(1)	Black
(4)	White
Outer dismeter of bearing races	
Item number	Outer diameter mm (in)
(7)	43.5 (1.713)
(16)	82.0 (3.228)
(13)	63.2 (2.488)
Instatation of one-piece bearings	
\|tem number	Bearing race (black) location
(15)	Rear side
16	Rear side

Disassembly

1. Remove torque converter by holding it firmly and turning while pulling straight out.
2. Check torque converter one-way clutch.
a. Insert Tool into spline of one-way clutch inner race.
b. Hook bearing support unitized with one-way clutch outer race with suitable wire.
c. Check that one-way clutch inner race rotates only clockwise with Tool while holding bearing support with wire.
3. Remove inhibitor switch from transmission case.
4. Remove oil pan.
a. Drain A.T.F. from rear extension.
b. Raise oil pan by placing wooden blocks under converter housing and rear extension.
c. Separate the oil pan and transmission case.

- Always place oil pan straight down so that foreign particles inside will not move.

5. Place transmission into Tool with the control valve facing up.

DISASSEMBLY

Disassembly (Cont'd)

6. Check oil pan and oil strainer for accumulation of foreign particles.

- If materials of clutch facing are found, clutch plates may be worn.
- If metal tilings are found, clutch plates, brake bands, etc. may be worn.
- If aluminum filings are found, bushings or aluminum cast parts may be wofn.
In above cases, replace torque converter and check unit for cause of particle accumulation.

7. Remove lock-up solenoid and fluid temperature sensor connectors.

- Be careful not to damage connector.

8. Remove oil strainer.
a. Remove oil strainer from control valve assembly. Then remove O-ring from oil strainer.
b. Check oil strainer screen for damage.
9. Remove control valve assembly.
a. Straighten terminal clips to free terminal cords then remove terminal clips.

Disassembly (Cont'd)

b. Remove bolts (B) and (B), and remove control valve assembly from transmission.

Bolt	
(3)	33 (1.30)
(i)	45 (1.77)

d. Remove manual valve from control valve assembly.
10. Remove terminal cord assembly from transmission case while pushing on stopper.

- Be careful not to damage cord.
- Do not remove terminal cord assembly uniess it is damaged.

DISASSEMBLY

b. Remove O-ring from oil pump assembly.
c. Remove traces of sealant from oil pump housing.

- Be careful not to scratch pump housing.
d. Remove needle bearing and thrust washer from oil pump assembly.

Dlsassembly (Cont'd)

14. Remove input shaft and oil pump gasket.
15. Remove brake band and band strut.
a. Loosen lock nut and remove band servo anchor end pin from transmission case.
b. Remove brake band and band strut from transmission case.

c. Hold brake band in a circular shape with clip.
16. Remove front side clutch and gear components.
a. Remove clutch pack (reverse clutch, high clutch and front sun gear) from transmission case.

DISASSEMBLY

Disassembly (Cont'd)

b. Remove front bearing race from clutch pack.
c. Remove rear bearing race or front needie bearing from clutch pack.
d. Remove front planetary carrier from transmission case.
e. Remove front needle bearing or front bearing race trom front planetary carrier.
f. Remove rear needle bearing from front planetary carrier.

Disassembly (Cont'd)

g. Remove rear sun gear trom transmission case.
17. Remove rear extension.
a. Remove rear extension from transmission case.
b. Remove rear extension gasket from transmission case.
c. Remove oil seal from rear extension.

- Do not remove oll seal unless it is to be replaced.
d. Remove revolution sensor from rear extension.
e. Remove O-ring from revolution sensor.

Disassembly (Cont'd)

18. Remove output shaft and parking gear.
a. Remove rear snap ring from output shaft.
b. Slowly push output shaft all the way forward.

- Do nol use excessive force.
c. Remove snap ring from output shatt.
d. Remove output shaft and parking gear as a unit from transmission case.
e. Remove parking gear from output shaft.
f. Remove needle bearing from transmission case.

19. Remove rear side clutch and gear components.
a. Remove front internal gear.

Disassembly (Cont'd)

b. Remove bearing race from front internal gear.
c. Remove needle bearing from rear internal gear.
d. Remove rear internal gear, torward clutch hub and overrun ciutch hub as a set from transmission case.
e. Remove needle bearing from overrun clutch hub.
f. Remove overrun clutch hub from rear internal gear and forware clutch hub.

DISASSEMBLY

b. Apply compressed air to on hole until band servo piston comes out of transmission case.

* Hold piston with a rag and gradually direct air to oll hole.
c. Remove return springs.
h. Remove forward clutch assembly from transmission case.

20. Remove band servo and accumulator components.
a. Remove band servo retainer from transmission case.
d. Remove springs from accumulator pistons B, C and D.
e. Apply compressed air to each oil hole until piston comes out.

- Hold piston with a rag and gradually direct air to oil hole.

Identification of accumulator pistons	A	B	C	D
Identification of oll holes	a	b	C	d

Disassembly (Cont'd)

f. Remove O-ring from each piston.
21. Remove manual shaft components, if necessary.
a. Hold width across tlats of manual shaft foutside the transmission case) and remove lock nut from shaft.
b. Remove retaining pin from transmission case.
c. While pushing detent spring down, remove manual plate and parking rod from transmission case.
d. Remove manual shaft from transmission case.

DISASSEMBLY

Disassembly (Cont'd)

e. Remove spacer and detent spring from transmission case.
t. Remove oil seal from transmission case.

Oil Pump

DISASSEMBLY

1. Loosen bolts in numerical order and remove oil pump cover.
2. Remove rotor, vane rings and vanes.

- Inscribe a mark on back of rotor for identification of fore-aft direction when reassembing rotor. Then remove rotor.

3. White pushing on cam ring remove pivot pin.

- Be careful not to scratch oil pump housing.

Oil Pump (Cont'd)

4. While holding cam ling and spring lift out cam ring spring.

- Be careful not to damage oil pump housing.
- Hold cam ring spring to prevent it from jumping.

5. Remove cam ring and cam fing spring from oil pump housing.

6. Remove oil seal from oil pump housing.

- Be careful not to scratch oil pump housing.

INSPECTION

Oll pump cover, rotor, vanes, control piston, side seals, cam ring and friction ring

- Check for wear or damage.

Oil Pump (Cont'd)

Side clearances

- Measure side clearances between end of oil pump housing and cam ring, rotor, vanes and control piston in at least four places along their circumferences. Maximum measured values should be within specified ranges.
- Before measuring side clearance, check that friction rings, O-ring, controi piston side seals and cam ring spring are removed.

Standard clearance:
Cam ring
$0.01-0.024 \mathrm{~mm}(0.0004-0.0009 \mathrm{in})$
Rotor, vanes, control piston
$0.03-0.044 \mathrm{~mm}(0.0012-0.0017 \mathrm{in})$

- If not within standard clearance, replace oif pump assembly except oil pump cover assembly.

ASSEMBLY

1. Drive oil seal into ofl pump housing.

- Apply A.T.F. to outer periphery and lip surface.

2. Install cam ring in oil pump housing by the following steps.
a. Install side seal on control piston.

- Pay attention to its direction - Black surface goes toward control piston.
- Apply petroleum jelly to side seal.
b. Install control piston on oil pump.

Oil Pump (Cont'd)

c. Install O-ring and friction ring on cam ring.

- Apply petroleum jelly to O-ring.
d. Assemble cam ring, cam ring spring and spring seat. Install spring by pushing it against pemp housing.
e. While pushing on cam ring install pivot pin.

3. Install rotor, vanes and vane rings.

- Pay attention to direction of rotor.

4. Install oil pump housing and oil pump cover.
a. Wrap masking tape around splines of oil pump cover assembly to protect seal. Position oil pump cover assembly in ol pump housing assembly, then remove masking tape.
b. Tighten bolts in a criss-cross pattern.

Oil Pump (Cont'd)

5. Install seal rings carefully atter packing ting grooves with petroleum jelly. Press rings down into jelly to a close fit.

- Seal rings come in two difierent diameters. Check fit carefully In each groove.

Small dla. seal ring:
No mark
Large dia. seal ring:
Yellow mark in area shown by arrow

- Do not spread gap of seal ring excessively while installing. It may deform ring.

Control Valve Assembly

SATG3BE

Control Valve Assembly (Cont'd) DISASSEMBLY

1. Remove solenoids.
a. Remove lock-up solenoid and side plate from lower body.
b. Remove O-ring from solenoid.

SAT19\%B

c. Remove line pressure sofenold from upper body.
d. Remove O-ring from solenoid.
e. Remove 3-unit solenoid assembly from upper body.
f. Remove O-rings from solenoids.
2. Disassemble upper and lower bodies.
a. Place upper body facedown, and remove bolts, reamer bolts and support plates.
b. Remove lower body, separator plate and separate gasket as a unit from upper body.

- Be caretul not to drop pilot titer, orifice check valve, spring and steel balls.
c. Place lower body facedown, and remove separate gasket and separator plate.
d. Remove pilot tilter, orifice check valve and orifice check spring.

Control Vaive Assembly (Cont'd)

e. Check to see that steel balls are properiy positioned in upper body and then remove them from upper body.

INSPECTION

Lower and upper bodies

- Check to see that there are pins and retainer plates in fower body.
- Check to see that there are pins and retainer plates in upper body.
- Be careful not to lose these parts.
- Check to make sure that oil circuits are clean and free from damage.
- Check tube brackets and tube connectors for damage.

Separator plates

- Check to make sufe that separator plate is free of damage and not deformed and oil holes are clean.

REPAIR FOR COMPONENT PARTS

Control Valve Assembly (Cont'd)

Pilof filter

- Check to make sure that filter is not clogged or damaged.

Lock-up solenoid

- Check that filter is not clogged or damaged.
- Measure resistance. - Refer to "Electrical Components Inspection".

Line pressure solenoid

- Check that filter is not clogged or damaged.
- Measure resistance. - . Refer to "Electrical Components Inspection".

3 -unit solenoid assembly (Overrun clutch solenoid and shift solenoids A and B)

- Measure resistance of each solenoid. - Refer to "Electrical Components Inspection'.

Fluid temperature sensor

- Measure resistance. - Refer to "Electrical Components Inspection".

c. Place oil circuit of lower body face up. Install orifice check spring, orifice check valve and pilot filter.

Control Valve Assembly (Cont'd)
 \section*{ASSEMBLY}

1. Install upper and lower bodies.
a. Place oil circuit of upper body face up. Install steel balls in their proper positions.
b. Install reamer bolts from bottom of upper body and install separate gaskets.
d. Install lower separate gaskets and separator plates on lower body.
e. Install and temporarily tighten support plates, fluid temperature sensor and tube brackets.

REPAIR FOR COMPONENT PARTS

Control Valve Assembly (Cont'd)

f. Temporarily assemble lower and upper bodies, using reamer bolt as a guide.

- Be careful not to dislocate or drop steel balls, orlfice check spring, orifice check valve and pifot fiter.
g. Install and temporarily tighten bolts and tube brackets in their proper focations.
Boli fength and location:

Bolt symbol	a	b	c	d	
Hem	mm (in)	70	50	33	27
Bolt length	(2.76)	(1.97)	(1.30)	$\{1.06)$	

2. install solenoids.
a. Attach O-ring and install lock-up solenoid and side plates onto lower body.
b. Attach O-rings and install 3 -unit solenoids assembly onto upper body.
c. Attach O-ring and install tine pressure solenoid onto upper body.
3. Tighten all bolts.

Control Valve Upper Body

Torque converter relief valve (J) Return spring Retainer plate

Control Valve Upper Body (Cont'd) disassembly

1. Remove valves at parallel pins.

- Do not use a magnetic hand.

a. Use a wire paper cilip to push out parallel pins.
b. Remove parallel pins while pressing their corresponding plugs and sleeves.
- Remove plug slowly to prevent Internal parts from jumping out.

c. Place mating surface of valve facedown, and remove internal parts.
- It a valve is hard to remove, place valve body lacedown and lightiy tap it with a soft hammer.
- Be careful not to drop or damage valves and sleeves.

2. Remove valves at retainer plates.
a. Pry out retainer plate with wire paper clip.

c. Place mating surface of valve facedown, and remove internal parts.

- If a valve is hard to remove, lightly tap valve body with a soft hammer.
- Soft hammer,

Control Valve Upper Body (Cont'd)

b. Remove retainer plates while holding spring.

- 4-2 sequence valve and relay valve are located tar back in upper body. If they are hard to remove, cafefully push them out using stiff wire.
- Be careful not to scratch shding surtace of valve with wire.

REPAIR FOR COMPONENT PARTS

Control Valve Upper Body (Cont'd) INSPECTION

Valve springs

- Measure free length and outer diameter of each valve spring. Aiso check for damage or deformation.
- Numbers of each valve spring listed in table below are the same as those in the figure on AT-129.

Inspection standard
Urit: man (in)

Parts		Part No.	ℓ	D
(4)	Torque converter reliet valve spring	31742.47×23	38.0 (1.486)	9.0 (0.354)
(3)	Pressure regulator valve spring	31742-41×24	44.02 \{ 1.7331$\}$	14.0 (0.551)
(3)	Pressure modifier valwe spring	31742-41×19	31.95 (1.2579)	6.8 (0.268)
(4)	Shutte shift valve D spring	31762-41×00	26.5 ($\ddagger .043$)	6.0 (0.236)
(5)	4-2 sequence valve spring	31756-41×00	29.1 (1.146)	6.95 (0.2736)
(6)	Shit valve 8 spring	$31762-41 \times 01$	25.0 (0.984)	7.0 (0.276)
(3)	4-2 relay vatue spring	31756-4 $\times 00$	29. (1.146)	6.95 (0.2736)
(8)	Shift valve A spring	31762-41) ${ }^{\text {(01 }}$	25.0 (0.984)	7.0 (0.276)
(9)	Overrun clutch control valve spring	31762-41803	23.6 (0.929)	7.0 (0.276)
(10)	Overrun clutch reducing valve spring	$31742-41 \times 20$	32.5 (1.280)	$7.0(0.276)$
(1)	Shutte shift valve S spring	31762-41×04	$57.0(2.008)$	5.65 (0.2224)
(1)	Pliot valve spring	31742-41×13	25.7 (1.012)	0.1 (0.358)
(13)	Lack-up control valve sprimg	$31742-41 \times 22$	18.5 (0.728)	13.0(0.512$)$

- Replace valve springs if deformed of fatigued.

Control valves

- Check sliding surfaces of valves, sleeves and plugs.

Control Valve Upper Body (Cont'd) ASSEMBLY

1. Lubricate the control valve body and all valves with A.T.F. Install control valves by sliding them carefully into their bores.

- Be careful not to scratch or damage valve body.

- Wrap a small screwdriver with vinyl tape and use it to insert the valves into proper position.

Pressure regulator valve

- If pressure regulator plug is not centered properly, sleeve cannot be inserted into bore in upper body. If this happens, use vinyl tape wrapped screwdriver to center sleeve until it can be inserted.
- Turn sleeve slightly while instaling.

Accumulator control plug

- Align protrusion of accumulator control sleeve with notch in plug.
- Align parallel pin groove in plug with parallel pin, and install accumulator control valve.

2. Install parallel pins and retainer plates.

Control Valve Upper Body (Cont'd)

4-2 sequence valve and relay valve

- Push 4-2 sequence valve and relay valve with wire wrapped in vinyl tape to prevent scratching valve body. Install parallel pins.
- Insert retainer plate while pushing spring.

Control Valve Lower Body

Control Valve Lower Body (Cont'd) dISASSEMBLY

1. Remove valves at parallel pins.
2. Remove valves at retainer plates.

For removal procedures, refer to "DISASSEMBLY" of Control Valve Upper Body.

INSPECTION

Valve springs

- Check each valve spring for damage or deformation. Also measure tree length and outer diameter.
- Numbers of each valve spring fisted in table below are the same as those in the figure on AT-135.

Inspection standard:

Unit: mm (in)

Parts		Part No.	ℓ	D
(3)	Modifier accumulator piston spring	31742-41×15	3 ¢.5 (1.20)	9.8 (0.386)
(2)	1st reducing valve spring	$31756-41 \times 05$	25.4 (1.000)	6.75 (0.2657)
(2)	3-2 limirg valve spring	31742 -41×08	20.55 (0.8091)	6.75 (0.2657)
(4)	Sefvo charger valve spring	31742-41×06	23.0 (0.906)	$6.7(0.264)$

ASSEMBLY

- Install control valves.

For installation procedures, refer to "ASSEMBLY" of Control Valve Upper Body.

- Replace valve springs if deformed or tatigued.

Control valves

- Check sliding surfaces of control valves, sleeves and plugs for damage.

Reverse Clutch

DISASSEMBLY

1. Check operation of reverse clutch.
a. Install seal ring onto oil pump cover and install reverse clutch. Apply compressed air to cil hole.
b. Check to see that retaining plate moves to snap ring.
c. If retaining plate does not move to snap ring, D-ring or oil seal may be damaged or fluid may be leaking at piston check bali.
2. Remove drive plates, driven plates, retaining plate, dish plate and snap ring.

Reverse Clutch (Cont'd)

3. Remove snap ring from clutch drum while compressing clutch springs.

- Do not expand snap ring excessively.

4. Remove spring retainer and return spring.
5. Install seal ring onto oil pump cover and install teverse clutch drum. While holding piston. gradually apply compressed air to oll hole until piston is removed.

- Do not apply compressed air abruptly.

6. Remove D-ring and oil seal from piston.

INSPECTION

Reverse clutch snap ring and spring retainer

- Check for deformation, fatigue or damage.

Reverse clutch return springs

- Check for deformation or danage. Also measure tree length and outside diameter.

Inspection standard:

Unit: mm (in)

Mode.	Part No.	\boldsymbol{Q}	D
RE4R01A	$31505-41 \times 02$	$19.69(0.7752)$	$14.6(0.457)$
PE4R03A	31505.51×00	$37.8(1.488)$	$14.6(0.583)$

Reverse clutch drive plates

- Check facing for burns, cracks or damage.
- Measure thickness of facing.

Thickness of drive plate:
Standard value: 2.0 mm (0.079 in)
Wear limit: 1.8 mm (0.071 in)

- If not within wear limit, replace.

Aeverse clutch dish plate

- Check for deformation or damage.

Reverse clutch piston

- Shake piston to assure that balls are not seized.
- Apply compressed air to check ball oil hole opposite the return spring to assure that there is no air leakage.
- Also apply compressed air to oil hole on retufn spring side to assure that air leaks past ball.

Reverse Clutch (Cont'd) ASSEmbly

1. Install D-ring and oil seal on piston.

- Apply A.T.F, to both parts.

2. Instali piston assembly by turning it slowly and evenly.

- Apply A.T.F. to Inner surface of drum.

3. Install return spfings and spring retainer.
4. Install snap ring while compressing clutch springs.

- Do not align snap ring gap with spring retainer stopper.

Reverse Clutch (Cont'd)

5. Install drive plates, driven plates, retaining plate and dish plate.
6. Install snap ring.
7. Measure clearance between retaining pate and snap ring. If not within allowable limit, select proper retaining plate.

Specified clearance:
Standard
$0.5 \cdot 0.8 \mathrm{~mm}(0.020 \cdot 0.031 \mathrm{in})$
Allowable limit
1.2 mm (0.047 in)

Retaining plate:
Refer to S.D.S.
8. Check operation of reverse clutch.

Refer to "DISASSEMBIY" of Reverse Clutch.

High Clutch

High Clutch (Cont'd)

Service procedures for high clutch are essentially the same as those for reverse clutch, with the following exception:

- Check of high clutch operation
- Removal and installation of return spring
- Inspection of high clutch return springs

Inspection standard:
Unit: mers (in)

Part No.	ℓ	D
$31505-21 \times 03$	$22.06(0.8685)$	$11.6(0.457)$

- inspection of high clutch drive plate

Thickness of drive plate:
Standard
$1.6 \mathrm{~mm}(0.063 \mathrm{in})$
Wear limit
1.4 mm (0.055 in)

- Measurement of clearance between retaining plate and snap ring

Spechied ciearance:
Standard
$1.8-2.2 \mathrm{~mm}(0.071-0.087 \mathrm{in})$
Allowable limit
$3.2 \mathrm{~mm}(0.126 \mathrm{ln})$
Retaining plate:
Peler to S.D.S.

Forward and Overrun Clutches

For the intmber of elutch sheets (drive plate and driven plati), refir to the helow cress-section.

[^10]
REPAIR FOR COMPONENT PARTS

Forward and Overrun Clutches (Cont'd)

Service procedures for forward and overrun clutches are essentially the same as those for reverse clutch, with the following exception:

- Check of forward clutch operation.
- Check of overrun clutch operation.
- Removal of forward clutch drum

Remove forward clutch drum from transmission case by holding snap ring.

- Removal of forward clutch and overrun clutch pistons

1. While holding overrun clatch piston, gradually apply compressed air to oil hole.
2. Remove overrun clutch from forward clutch.

Forward and Overrun Clutches (Cont'd)

- Removal and installation of return springs
- Inspection of forward clutch and overrun clutch return springs

Inspection standard:
Unit: mm (in)

Model	Part No.	ε	D
RE4R01A	$31505-41 \times 01$	$35.77(1.4083)$	$9.7(0.382)$
PE/AR03A	$31505-51 \times 04$	$36.8(1.449)$	$9.8(0.386)$

- Inspection of forward clutch drive plates

Thickness of drive plate:
Standard
1.6 mm (0.063 in) (RE4R01A)
2.0 mm (0.079 in) (RE4R03A)

Wear limit
1.4 mm (0.055 in) (RE4R01A)
1.6 mm (0.063 in) (RE4R03A)

- inspection of overrun clutch drive plates

Thickness of drive plate:
Standard
2.0 mm (0.079 in) (RE4R01A)
1.6 mm (0.063 in) (RE4R03A)

Wear imit
$1.8 \mathrm{~mm}(0.071 \mathrm{ln})$ (RE4R01A)
1.4 mm (0.055 in) (RE4月03A)

- Installation of forward clutch piston and overrun clutch piston

1. Install forward clutch piston by turning it slowly and evenily.

- Apply A.T.F. to inner surface of clutch drum.

Forward and Overrun Clutches (Cont'd)

- Align notch in forward ciufch piston with groove in forward clutch drum.

2. Install overrun ciutch by turning it slowly and evenly.

- Apply A.T.F. to inner surface of forward ciutch piston.
- Measurement of clearance between retaining plate and snap ring of overrun clutch

Specifled clearance:
Standard
$1.0-1.4 \mathrm{~mm}(0.039-0.055 \mathrm{~m})$
Allowable limit
2.0 mm (0.079 in) (RE4R01A)
2.2 mm (0.087 in) (RE4R03A)

Retaining plate:
Refer to S.D.S.

- Measurement of clearance between retaining plate and snap ring of forward clutch

Specified clearance:
Standard
$0.45-0.85 \mathrm{~mm}(0.0177-0.0335 \mathrm{in})$
Allowable limit
2.25 mm (0.0886 in) (RE4R01A)
2.45 mm (0.0965 in) (RE4R03A)

Retaining plate:
Refer to S.D.S.

Low \& Reverse Brake

DISASSEMBLY

1. Check operation of low and reverse brake.
a. Install seal ring onto oil pump cover and install reverse clutch. Apply compressed air to oil hole.
b. Cneck to see that retaining plate moves to snap ring.
c. If retaining plate does not move to snap zing, D-ring or oil seal may be damaged or fluid may be leaking at piston check ball.
2. Remove snap ring, low and reverse brake drive plates, driven plates and dish plate.

Low \& Reverse Brake (Cont'd)

3. Remove low one-way clutch inner race, spring retainer and return spring from transmission case.
4. Remove seal rings from low one-way clutch inner race.
5. Remove needle bearing from low one-way clutch inner race.
6. Remove low and reverse brake piston using compressed air.
7. Remove oll seal and D-ring from piston.

INSPECTION
Low and reverse brake snap ring and spring retainer

- Check for deformation, or damage.

Low and reverse brake return springs

- Check for deformation or damage. Also measure free length and outside diameter.
inspection standard:
Unit: mm (in)

Model	Part No.	ℓ	D
REAR01A	$31521-21 \times 00$	$23.7(0.933)$	$11.6(0.457)$
RE4R03A	$31505-51 \times 00$ (Itner)	$20.43(0.8043)$	$9.4(0.370)$
	$31505-51 \times 05$ (Outer)	$20.35(0.8012)$	$11.9(0.469)$

REPAIR FOR COMPONENT PARTS

Low \& Reverse Brake (Cont'd)

Low and reverse brake drive plates

- Check facing for burns, cracks or damage.
- Measure thickness of facing.

Thickness of drive plate:
Standard value
2.0 mm (0.079 in) (RE4R01A)
1.6 mm (0.063 in) (RE4R03A)

Wear limit
1.8 mm (0.071 in) (RE4R01A)
1.4 mm (0.055 m) (RE4R03A)

- If not within wear limit, replace.

Low one-way clutch inner race

- Check frictional surface of inner race for wear or damage.
- Install a new seal rings onto low one-way clutch inner race.
- Be careful not to expand seal ring gap excessively.
- Measure seal ring-to-groove clearance.

Inspection standard:
Standard value: $0.10-\mathbf{0 . 2 5} \mathrm{mm}(0.0039-0.0098 \mathrm{in})$
Allowable limit: 0.25 mm (0.0098 in)

- If not within allowable limit, feplace low one-way clutch inner race.

ASSEMBLY

1. Install bearing onto one-way clutch inner race.

- Pay attention to its direction - Black surface goes to rear side.
- Apply petroleum jelly to needie bearing.

2. Install oil seal and D-ring onto piston.

- Apply A.T.F. to oil seal and D-ring.

REPAIR FOR COMPONENT PARTS

Low \& Reverse Brake (Cont'd)

3. Install piston by rotating it slowly and evenly.

- Apply A.T.F. to inner surface of transmission case.

4. Install refurn springs, spring retainer and low one-way clutch inner race onto transmission case.
5. Install dish plate, low and reverse brake drive plates, driven plates and retaining plate.

- Two types of drive plates are used on the RE4R03A transmission. One type uses a "waving" design and the other type uses a "flat" design. Elther one can be installed first since they are interchangeable.

6. Install snap ring on transmission case.
7. Check operation of low and reverse brake clutch piston. Refer to "DISASSEMBLY".

REPAIR FOR COMPONENT PARTS

Low \& Reverse Brake (Cont'd)
8. Measure clearance between retaining plate and snap ring. If not within allowable inmit, select proper retaining plate.

Spectiled clearance:
Standard
$1.1-1.5 \mathrm{~mm}(0.043-0.059 \mathrm{ln})$
Alowable Hint
2.9 mm (0.114 in)

Retaining plate:

Refer to S.D.S.

9. Install low one-way clutch inner race seal ring.

- Apply petroleum felly to seal ring.
- Make sure seal rings are pressed firmiy into place and held by petroleum jelly.

Forward Clutch Drum Assembly - RE4R01A

2. Remove side plate from forward clutch drum.
3. Remove low one-way clutch from forward clutch drum.

4. Remove snap ring from forward clutch drum.
5. Remove needle bearing from forward clutch drum.

INSPECTION

Forward clutch drum

- Check spline portion for wear or damage.
- Check frictional surfaces of low one-way clutch and needle bearing for wear or damage.

Needle bearing and low one-way clutch

- Check frictional surface for wear or damage.

ASSEMBLY

1. Install needle bearing in forward clutch drum.

Forward Clutch Drum Assembly - RE4R01A (Cont'd)

2. Install snap ring onto forward clutch drum.
3. Install low one-way clutch onto forward clutch drum by pushing the roller in evenly.

- Install low one-way clutch with flange facing rearward.

4. Install side plate onto forward clutch drum.
5. Install snap ring onto forward clutch drum.

DISASSEMBLY

1. Remove side plate from forward clutch drum.
2. Remove low one-way clutch from forward clutch drum.
3. Remove snap ring from forward clutch drum.

REPAIR FOR COMPONENT PARTS

Forward Clutch Drum Assembly - RE4R03A (Cont'd)

4. Remove needle bearing from forward clutch drum.

INSPECTION

Forward clutch drum

- Check spline portion for wear or damage.
- Check frictional surfaces of low one-way clutch and needie bearing for wear or damage.

Needle bearing and low one-way clutch

- Check frictional surface for wear or damage.

ASSEMBLY

1. Install needle bearing in forward clutch drum.
2. Install snap ring onto forward clutch drum.

Forward Clutch Drum Assembly - RE4R03A (Cont'd)

3. Install low one-way clutch onto forward clutch drum by pushing the roller in evenly.

- Install low one-way clutch with flange facing rearward.

4. Install side plate onto forward clutch drum.

Rear Internal Gear and Forward Clutch Hub

DISASSEMBLY

1. Remove rear internal gear by pushing forward clutch hub forward.
2. Remove thrust washer from rear internal gear.
3. Remove snap ring from forward clutch hub.

Rear Internal Gear and Forward Clutch Hub (Cont'd)

4. Remove end bearing.
5. Remove forward one-way clutch and end bearing as a unit from forward clutch hub.

6. Remove snap ring from forward clutch hub.

INSPECTION

Rear internal gear and forward clutch hub

- Check gear for excessive wear, chips or cracks.
- Check frictional surfaces of forward oneway clutch and thrust washer for wear or damage.
- Check spline for wear or camage.

Snap ring and end bearing

- Check for deformation or damage.

REPAIR FOR COMPONENT PARTS

Rear Internal Gear and Forward Clutch Hub (Cont'd)

ASSEMBLY

1. Install snap ring onto forward clutch hub.
2. Install end bearing.

3. Install forward one-way clutch onto ciutch hub.

- Insiall forward one-way clutch with flange facing rearward.

4. Install end bearing.
5. Install snap ring onto forward clutch hub.
6. Install thrust washer onto rear internal gear.

- Appiy petroleum jelly to thrust washer.
- Securely insert pawls of thrust washer into holes in rear internal gear.

7. Position forward clutch hub in rear internal gear.
8. After installing, check to assure that forward clutch hub rotates clockwise.

Band Servo Piston Assembly

DISASSEMBLY

1. Block one oil hole in O.D. servo piston retainer and the center hole in O.D. band servo piston.
2. Apply compressed air to the other of hole in piston retainer to remove O.D. band servo piston from retainer.
3. Remove D-ring from O.D. band servo piston.
4. Remove band servo piston assembly from servo piston retainer by pushing it forward.
5. Place piston stem end on a wooden block. While pushing servo piston spring retainer down, temove E-ring.

Band Servo Piston Assembly (Cont'd)

7. Remove E-ring from band servo piston.
8. Remove servo cushion spring retainer from band servo piston.
9. Remove D-rings from band servo piston.
10. Remove O-rings from servo piston retainer.

INSPECTION

Pistons, retainers and plston stem

- Check frictional surfaces for abnormal wear or damage.

Return springs

- Check for deformation or damage. Measure free length and outer diameter.
Inspectlon standard: Unit: mim (in)

Parts	Free length	Outer diameter
Spring A	$45.6(1.795)$	$34.3(1.350)$
Spring B	$53.8(2.118)$	$40.3(1.587)$
Spring C	$29.7(1.169)$	$27.6(1.087)$

Band Servo Piston Assembly (Cont'd)

ASSEMBLY

1. Install O-rings onto servo piston retainer.

- Apply A.T.F. to O-rings.
- Pay attention to position of each O-ring.

2. Instail servo cushion spring retainer onto band servo piston.
3. Install E-ring onto servo cushion spring retainer.
4. Install D-rings onto band servo piston.

- Apply A.T.F. to D-rings.

5. Install servo piston spring retainer, return spring C and piston stem onto band servo piston.

REPAIR FOR COMPONENT PARTS

Band Servo Piston Assembly (Cont'd)

6. Place piston stem end on a wooden block. White pushing servo piston spring retainer down, install E-ring.
7. Install band servo piston assembly onto servo piston re* tainer by pusining it inward.
8. Install D-ring on O.D. band servo piston.

- Apply A.T.F. to D-ring.

9. Install O.D. band servo piston onto servo piston retainer by pushing it inward.

Parking Pawl Components

DISASSEMBLY

1. Slide return spring to the front of rear extension flange.
2. Remove return spring, pawi spacer and parking pawl from rear extension.
3. Remove parking pawl shaft from rear extension.
4. Remove parking actuator support and rod guide from rear extension.

Parking Pawl Components (Cont'd)

ASSEMBLY

1. Install rod guide and parking actuator support onto rear extension.
2. Insert parking pawl shaft into rear extension.
3. Install return spring, pawi spacer and parking pawi onto parking pawl shaft.
4. Bend return spring upward and install it onto rear extension.

Assembly

1. install manual shaft components.
a. Install oil seal onto manual shaft.

- Apply A.T.F. to oil seal.
- Wrap threads of manual shaft with masking tape.
b. Insert mantal shaft and oil seal as a unit into transmission case.
c. Remove masking tape.
d. Push oil seal evenly and install it onto transmission case.
e. Align groove in shaft with drive pin hole, then drive pin into position as shown in figure at left.
f. Install detent spring and spacer.
g. While pushing detent spring down, install manual plate onto manual shaft.

ASSEMBLY

Assembly (Cont'd)

h. Install lock nuts onto manual shath.

2. Install accumulator piston.
a. Install O-rings onto accumulator piston.

- Apply A.T.F. to O-rings.

Accumulator plston O-rings:
Unit: mm (im)

Accumulator	A	B	C	D
Small diameter end	$29(1.14)$	$32(1.26)$	$45(1.77)$	$29(1.14)$
Large diameter end	$45(9.77)$	$50(1.97)$	$50(1.97)$	$45(1.77)$

b. Install return spring for accumutator A onto transmission case.
Free length of return spring:
Unit: mm (in)

Accumulator	A
Free ength	

c. Install accumulator pistons A, B, C and D.

- Apply A.T.F. to transmission case.

3. Install band servo piston.
a. install return springs onto servo piston.

Assembly (Cont'd)

4. Install rear side clutch and gear components.
a. Place transmission case in vertical position.
b. Slightly lift forward clutch drum assembly and slowly rotate it clockwise until its hub passes fully over the clutch inner race inside transmission case.
c. Check to be sure that rotation direction of forward cfutch assembly is correct.

Assembly (Cont'd)

d. Install thrust washer onto front of overrun clutch hub.

- Apply petroleum jelly to the thrust washer.
- Insert pawls of thrust washer securely into hoies in overrun clutch hulb.
e. Install overrun ciutch hub onto rear internal gear assembly.
f. Install needle bearing onto rear of overrun clutch hub.
- Apply petroleum jelly to needle bearing.
g. Check that overrun clutch hub rotates as shown while holding forward clutch hub.
h. Place transmission case into horizontal position.

ASSEMBLY

Assembly (Cont'd)

i. Install rear internal gear, forward clutch hub and overrun clutch hub as a unit onto transmission case.

1. Install needle bearing onto rear internal gear.

- Apply petroleum jelly to needie bearing.

k. Install bearing race onto rear of front internal gear.
- Apply petroleum jelly to bearing race.
- Securely engage pawls of bearing race with holes in front internal gear.

A. Install front intemal gear on transmission case.

Adjustment

When any parts listed in the following table are replaced, total end play or reverse clutch end play must be adjusted.

Part name	Total end play	Reverse ciutch end play
Transmission case	\bullet	\bullet
Low one-way ciatch inner race	\bullet	\bullet
Overrun clutch hub	\bullet	\bullet
Rear internal gear	\bullet	\bullet
Rear planetary carfier	\bullet	\bullet
Rear sun gear	\bullet	\bullet
Front planetary carrier	\bullet	\bullet
Front sun gear	\bullet	\bullet
High ciutch hut	\bullet	\bullet
High ciutch drum	\bullet	\bullet
Oil pump cover	\bullet	\bullet
Reverse clutch drum	\bullet	\bullet

1. Instali front side clutch and gear components.
a. Install rear sun gear on transmission case.

- Pay attention to its difection.

ASSEMBLY

Adjustment (Cont'd)

SAT970A

d. While rotating forward clutch drum clockwise, install front planetary carrier on forward clutch drum.

- Check that portion A of front planetary carrler protrudes approximately $2 \mathrm{~mm}(0.08 \mathrm{in})$ beyond portion B of forward clutch assembly. (RE4R01A only)
e. Install bearing race (RE4R01A) or needle bearing (RE4R03A) on rear of clutch pack.
- Apply petroleum jelly to bearing races.
- Securely engage pawis of bearing race with hole in clutch pack.
f. Place transmission case in vertical position.

ASSEMBLY

Adjustment (Cont'd)

Pums toover bearing face
SAT207B

g. Install clutch pack into transmission case.
2. Adjust total end play.
a. Install new oil pump gasket on transmission case.
b. Install pump cover bearing race on clutch pack.
c. Measure distance " B " between front end of transmission case and oil pump cover bearing race.
d. Measure distance ' C ' between front end of transmission case and oll pump gasket.

Adjustment (Cont'd)

e. Determine dimension " A " by using the following equation.

$$
\mathbf{A}=\mathbf{B}-\mathbf{C}
$$

4. Install needle bearing on oil pump assembly.
g. Measure distance " D " between needle bearing and machined surface of oil pump cover assembly.
h. Determine total end play " T_{1} " by using the following equation.
$\mathrm{T}_{1}=\mathrm{A}-\mathrm{D}-0.1$
Total end play " T,":
$0.25-0.55 \mathrm{~mm}(0.0098-0.0217 \mathrm{in})$

- If end play is out of specification, decrease or increase thickness of oll pump cover bearing race as necessary.

Avallable oil pump cover bearing race:
Refer to S.D.S.
3. Adjust reverse clutch drum end play.
a. Install oil pump thrust washer on clutch pack.

ASSEMBLY

Adjustment (Cont'd)

b. Measure distance " F " between front end of transmission case and oil pump thrust washer.
c. Measure distance " G " between front end of transmission case and gasket.
d. Determine dimension "E' by using the following equation. $\mathbf{E}=\mathbf{F}-\mathbf{G}$
e. Measure distance " H ".
4. Determine reverse clutch drum end play " T_{2} " by using the following equation.

$$
T_{2}=\mathbf{E}-\mathbf{H}-0.1
$$

Reverse clutch drum end play " T_{2} ":

$0.55-0.90 \mathrm{~mm}(0.0217-0.0354 \mathrm{fn})$

- If end play is out of specification, decrease or increase thickness of oil pump thrust washer as necessary.

Available oll pump thrust washer:
Refer to S.D.S.
4. Remove any part installed to adjust end plays.

Assembly

1. Install output shaft and parking gear.
a. Insert output shaft from rear of transmission case while slightly lifting front internal gear.

- Do not force output shaft against front of transmission case.
b. Carefully push output shaft against front of transmission case. Install snap ring on front of output shaft.
- Check to be sure output shaft cannot be removed in rear direction.
c. Install needle bearing on transmission case.
- Pay attention to its direction - Black side goes to rear.
- Apply petroleum jelly to needie bearing.
d. Install parking gear on transmission case.
e. Install snap ring on rear of output shaft.
- Check to be sure output shaft cannot be removed in forward direction.

Assembly (Cont'd)

2. Install rear extension.
a. Install oil seal on rear extension.

- Apply A.T.F. to oil seal.
b. Install O-ring on revolution sensor.
- Apply A.T.F. to O-ring.
c. Install revolution sensor on rear extension.
d. Install rear extension gasket on transmission case.
e. Install parking rod on transmission case.
f. Install rear extension on transmission case.

Assembly (Cont'd)

3. Install front side clutch and gear components.
a. Install rear sun gear on transmission case.

- Pay attention to its direction.
d. While rotating forward clutch drum clockwise, install front planetary carrier on forward clutch drum.
- Check that portion A of front planetary carrier protrudas approximately $2 \mathrm{~mm}(0.08 \mathrm{in})$ beyond portion B of forward clutch assembly. (RE4R01A only)

ASSEMBLY

Assembly (Cont'd)

e. Make sure bearing race (RE4R01A) or needle bearing (RE4R03A) are on front and rear of clutch pack.

- Apply petroleum jelly to bearing zaces.
- Securely engage pawls of bearing races with holes in clutch pack.
f. Install clutch pack into transmission case.

4. Install brake band and band strut.
a. Install band strut on brake band.

- Apply petroleum jelly to band strut.
b. Place brake band on periphery of reverse clutch drum, and insert band strut into end of band servo piston stem.
c. Install anchor end bolt on transmission case. Then, tighten anchor end bolt just enough so that reverse clutch drum (clutch pack) will not tilt forward.

Assembly (Cont'd)

d. Install O-ring on oil pump assembly.

- Apply petroleum jelly to O-ring.

7. Install oil pump assembly.
a. Install needle bearing on oil pump assembly.

- Apply petroleum jelly to the needie bearing.
b. Install selected thrust washer on oil pump assembly.
- Apply petroleum jelly to thrust washer.
c. Carefully install seal rings into grooves and press them into the petroleum jelly so that they are a tight fit.
e. Apply petroleum jelly to mating surface of transmission case and oil pump assembly.

9. Install converter housing.
a. Apply recommended sealant (Nissan genuine part: KP61000250 or equivalent) to outer periphery of bolt holes in converter housing.

- Do not apply too much sealant.

8. Install O-ring on input shaft.

- Apply A.T.F. to O-rings.

Assembly (Cont'd)

f. Install oll pump assembly.

- Install two converter housing securing bolts in boll holes in oll pump assembly as guides.
- insert oil pump assembly to the specified position in transmission, as shown at left.
b. Apply recommended sealant (Nissan genuine part: KP61000250 or equivalent) to seating surfaces of bolts that secure front of converter housing.

Assembly (Cont'd)

c. Install converter housing on transmission case.

c. While folding anchor end pin, tighten lock fut.

12. Install control valve assembly.
a. Install accumulator piston return springs B,C and D.

Free langth of return springs:
Unit: mm (in)

ASSEMBLY

Assembly (Cont'd)

e. Install control valve assembly on transmission case.
t. Install connector tube brackets and tighten bolts (a) and (i) .

- Check that terminal assembly harness does not catch.

Bolt symbol	$\ell \mathrm{mm}$ (in)
($)$	$33(1.30)$
(3)	$45(1.77)$

b. Install manual valve on control valve.

- Apply A.T.F. to manual valve.
c. Place control valve assembly on transmission case. Connect solenoid connector for upper body.
d. Install connector clip.
g. Install O-ring on oil strainer.
- Apply petroleum jelly to O-ring.
h. Install oil strainer on control valve.

j. Install lock-up solenoid and fluid temperature sensor connectors.

13. Install oil pan.
a. Attach a magnet to oil pan.
b. Install oil pan gasket on transmission case.
c. Install oil pan and bracket on transmission case.

- Tighten four bolts in a criss-cross pattern to prevent disiocation of gasket.

14. Install inhibitor switch.
a. Check that manual shaft is in " 1 " range.
b. Temporarily install inhibitor switch on manual shaft.
c. Move manual shaft to " N ".

ASSEMBLY

Assembly (Conl'd)

d. Tighten bolts while inserting $4.0 \mathrm{~mm}(0.157 \mathrm{in})$ dia. pin vertically into locating holes in inhibitor swith and manual shaft.
15. Install torque converter.
a. Pour A.T.F. into torque converter.

- Approximately 2 liters ($\mathbf{1 - 3 / 4} \mathrm{Imp} q \mathrm{t}$) of fluid are required for a new torque converter.
- When reusing old torque converter, add the same amount of fluid as was drained.

SATOESE

b. Install torque converter while aligning notches and oil pump.

c. Measure distance A to check that torque converter is in proper position.

Distance "A":

RE4R01A
$26 \mathrm{~mm}(1.02 \mathrm{in})$ or more RE4R03A
$25 \mathrm{~mm}(0.98 \mathrm{in})$ or more

General Specifications

Engine	VG30DE	VG300゙ETY
Automentic transmission model	RE4RO†A	fiE4P03A
Transmission model code number	45×65	51×10
Stall torque ratio		
Transmission gear rato		
$1 \$ 1$	2.785	2.784
2nd	1.545	\$.544
Top	1.000	1.000
Q.D.	0.694	0.694
Peverse	2.272	2.275
Recommended of	Automatic transmission fuid Type DEXRON ${ }^{\text {TM }}$	
Oil capacily \quad e($1 \mathrm{mp} \mathrm{q}^{\prime}$)	9.3(7.1/4)	8.7 (7-5/8)

Specifications and Adjustment - RE4R01A
VEHICLE SPEED WHEN SHIFTING GEARS

Wrotile position	Vehicle speed km / h ($\mathrm{MPD}^{\text {d }}$)					
	$\mathrm{D}_{4} \rightarrow \mathrm{D}_{2}$	$\mathrm{D}_{2} \rightarrow \mathrm{D}_{3}$	$\mathrm{D}_{3} \rightarrow \mathrm{D}_{4}$	$\mathrm{E}_{4} \rightarrow \mathrm{D}_{3}$	$\mathrm{D}_{3} \rightarrow \mathrm{D}_{2}$	$\mathrm{D}_{2} \rightarrow \mathrm{D}_{1}$
Fult throttle	$\begin{gathered} 50-54 \\ (31-34) \end{gathered}$	$\begin{aligned} & 107-115 \\ & (88-71) \end{aligned}$	$\begin{gathered} 166-176 \\ (103-109) \end{gathered}$	$\begin{gathered} 161-169 \\ (100-105) \end{gathered}$	$\begin{aligned} & 97-105 \\ & (60-65) \end{aligned}$	$\begin{aligned} & 44-48 \\ & (27-30) \end{aligned}$
Halt throttle	$\begin{gathered} 45-49 \\ (28-30) \end{gathered}$	$\begin{gathered} 53-89 \\ (52-55) \end{gathered}$	$\begin{aligned} & 119-127 \\ & (74-79) \end{aligned}$	$\begin{gathered} 80-86 \\ (50-55) \end{gathered}$	$\begin{gathered} 33-39 \\ (21-24) \end{gathered}$	$\begin{aligned} & 50-14 \\ & (6-9\}) \end{aligned}$

VEHICLE SPEED WHEN PERFORMING AND RELEASING LOCK-UP

Thfotile position	O.D. switch [Shits range]	Venicte speed	$\mathrm{km} / \mathrm{h}(\mathrm{M} / \mathrm{PH})$
		Lock-up 'ON'	Lock-up "OFF"
Full throtte	ON [D ${ }_{4}$]	$\begin{gathered} 167-175 \\ (104-109) \end{gathered}$	$\begin{gathered} 161-169 \\ (100-105) \end{gathered}$
	$\begin{aligned} & \mathrm{OHF} \\ & \left.\mathrm{CD}_{3}\right] \end{aligned}$	$\begin{aligned} & 107-115 \\ & (60-71) \end{aligned}$	$\begin{aligned} & 97-105 \\ & (60-65) \end{aligned}$
Hall inrottle	ON [Di]	$\begin{aligned} & 120-128 \\ & (75-80) \end{aligned}$	$\begin{gathered} 84-92 \\ (52-57) \end{gathered}$
	$\begin{aligned} & \mathrm{OFF} \\ & {\left[\mathrm{D}_{3} \mathrm{j}\right.} \end{aligned}$	$\begin{gathered} 91+99 \\ (57-62) \end{gathered}$	$\begin{gathered} 86 * 94 \\ (53-58) \end{gathered}$

STALL REVOLUTION

Stall revolution rpm
$2,450-2,650$

LINE PRESSURE

Englne speed rpm	Line pressure $\mathrm{kPa}_{\text {a }}\left(\mathrm{bar} \mathrm{kgicm}^{2}, \mathrm{psii}\right)$	
	D. 2 and 1 ranges	R range
Idle	$\begin{gathered} 412+490 \\ (4.12+4.90 \\ 4.2-5.0,60-71) \end{gathered}$	$\begin{gathered} 608-647 \\ (6.09-6.47 \\ 6.2-6.6 .88-94\} \end{gathered}$
Stal	$\begin{gathered} 1,020-1,098 \\ (10.20-10.98 \\ 10.4-11.2,148-159) \end{gathered}$	$\begin{gathered} 1,422-1.500 \\ (14.22-15.00 \\ 14.5-15.3,206-218) \end{gathered}$

Specifications and Adjustment - RE4R01A (Cont'd)

RETURN SPRINGS
Unit: men (in)

Parts			Part No.	Free length	Ouker diameter
Upper body Contro: valve		Torque conventer relief valye spring	31742-41×23	38.0 (1.496)	9.0 (0.354)
		Pressure regulator valve spring	31742-41×24	44.02 (1.7331)	14.0 (0.651)
		Preseure modifier valve spring	91742-41×19	31.85 (1.2579)	6.8 (0.288)
		Shutte shitt valve O spring	31762-41X00	76.5 (1.043)	6.0 (0.238)
		4-2 sequence valve spring	31756-41×00 29.1(1.146)		6.95 (0.2736)
		Shift valve to spring	31762-41×01	25.0 (0.984)	$7.010 .276)$
		4-2 reazy valve spring	$31756-41 \times 00$	29.1 (1.146)	6.95 (0.2738)
		Shift valve A spring	31762-41001	25.0 (0.984)	7.0 (0.276)
		Overrun ciutch control valve spring	31762-41×03	23.6 (0.529)	7.0 [0.276]
		Ovarrun clutch reducing valve spring	$31742-41 \times 20$	32.5 (1.260)	7.0 (0.276)
		Shutife shitt valve $\mathbf{5}$ spring	31762-41×04	51.0 (2.008)	5.65 (0.2324)
		Pilot valve spring	31742-41×13	25.7 (1.012)	9.1 (0.358)
		Lock-up control valve spring	31742-41×22	18.5 (0.728)	13.0 (0.512)
	Lowar body	Modilar accumalator piston spring	31742-41X15	30.5 (1.201)	9.8 (0.386)
		1 1st reducing velve spring	31756-41) ${ }^{\text {a }}$	25.4 (1.000)	8.75 (0.2657)
		3-2 timing valve spring	31742-47X08	20.55 (0.8091)	6.75 (0.26557)
		Servo charger valve spring	33742-41006	23.0 (0.906)	6.7 (0.264)
Reverse clutch		16 pcs	31505-41) 002	19.69 (0.7752)	\$1.6 (0.457)
High clutch		16 pcs	91505-21× 03	22.06 (0.8685)	14.6 (0.467)
Forwald citct (Overrun clutch)		20 pes	31505-4才×01	35.77 (1.4083)	9.7 (0.382)
Low $\%$ reverse brake		18 pes	34521-21)(00	23.7 (0.333)	11.6 (0.457)
Band servo		Spring A	31605-41×05	45.6 (1.795)	34.3 (1.350)
		Spring 8	35605-41X00	53.0 (2.118)	40.3(1.547)
		Spring C	35605-41×01	29.7 (1.169)	27.6 (1.087)
Accumulater		Accumulator A	3 $5605-41 \times 82$	43.0 (1.693)	
		Accumulator ${ }^{\text {a }}$	31605-41×10	68.0 (2.598)	
		Actumulator C	31805-41×09	45.0 (1.772)	
		Accumulator \emptyset	31605-41×06	58.4 (2.299)	\cdots

Specifications and Adjustment－RE4R01A（Cont＇d）

ACCUMULATOR O－RING

Accumuiator	Diameter mm（in）			
	A	B	C	D
	$29(1.14)$	$32(1.26)$	$45(1.77)$	$29(1.74)$
Large diameter end	$45(1.77)$	$50(1.97)$	$50(1.97)$	$45(1.77)$

CLUTCHES AND BRAKES

	2	
Number of drive plates		
Number of driven plates	2	
Thickness of dirive plate man（in） Standard Wear limitit	2.0 1.8	$079)$ 0717
Clearance \quad mon（in） Standard Allowable kimit	$0.5-0.8$ 1.2	20－0．0311 047）
Thickness of retaining plats	Thickness 	Part number
	4.6 （0．781） 4.8 （0． 589 ） $5.0(0.797)$ $5.2(0.205)$ $5.4(0.213)$ $5.6(0.220)$ $5.8(0.228)$	$\begin{aligned} & 31537-21 \times 00 \\ & 31537-21 \times 01 \\ & 31537-21 \times 02 \\ & 31537-21 \times 00 \\ & 31537-21 \times 04 \\ & 31567-21 \times 13 \\ & 31567-21 \times 14 \end{aligned}$
$\frac{\text { High eluteh }}{\text { Number of drive plates }}$		
Number of driven plates	5	
Thickness of drive plate fom（in） Standard Wear Imit	1.6	0631
Clearance mm（in） Standard Aliowable fimit	$1.8-2.21$ 3.2	$71-0.087)$ 126）
Thickness of retaining plate	Thickness mm （in）	Part number
	3.4 （0．134）	31537－41×71
	3.8 （0．150）	315．37－41）62
	4.0 （0．157）	31537－41×63
	4.2 （0．165）	31537－41X64
	4.4 ［0．173］	31537－41×65
	4.6 （0．18t）	31537－41×66
	4.8 （0．189）	31537－41×67

Forward cluten	7	
Number of drive plates		
Number of driven plates	7	
Thickness of drive plate man（in） Standard Wear limit	1.6 1.4	$063)$ $055)$
Clearance $\operatorname{mon}(i n)$ Stancard Allowable timp	0．45－0．85（0．0177－0．0335）	
Fhickness of retaining plate	Thickness mm（in）	Part number
	$\begin{aligned} & 4.0(0.157) \\ & 4.2(0.165) \\ & 4.4(0.173) \\ & 4.6(0.181) \\ & 4.8(0.189) \\ & 5.0(0.197) \\ & 5.2(0.205) \end{aligned}$	
Overrun claten Number of drive plates		
Number of driven plates	5	
Fhlekness of drive plate mm （ in ） Standard Wear limit	2.0	079）
Clearance min（in） Standard Allowable timit	1.0 +1.41 2.0	39－0．065） 079）
Thicknesa of retaining plate	Thickness mim（in）	Paft number
	4.0 （0．f57）	31537－41×79
	4.2 （0．765）	$31537 \% 41 \times 80$
	4.4 （0．773）	31537 －41×81
	4.6 （0．78）	31537－41×82
	4.8 （0．689）	31537－41X83
	5.0 （0．797）	31537－41）（84
	5.2 \｛0．205\}	

Specifications and Adjustment - RE4R01A (Cont'd)

Low in reverse brake	7	
Number of drive plates		
Number of driven plates	9	
Thickness of drive plate mm (in) Standard Wear limit		.079)
Clearance \quad mm (in) Standard Aftowable limit	1.1-1.5 (0.043-0.058)	
Thickness of retaining piate	Thickness mm (in)	Patt number
	$\begin{aligned} & 7.2(0.283) \\ & 7.4(0.297) \\ & 7.6(0.299) \\ & 7.8(0.307) \\ & 8.0(0.315) \\ & 8.2(0.323) \end{aligned}$	31667-4 $\times 13$ 3 $3667-41 \times 14$ 3:667-47X07 31667-41×08 $31667-41 \times 00$ 3:667-41×0:
Brake band	$\begin{gathered} 4 * 6 \\ (0.4-0.6,2.9-4.3) \end{gathered}$	
Anchor end bolt tightening lorque $\mathrm{N} \cdot \mathrm{m}(\mathrm{kg}-\mathrm{m}, \mathrm{f}+\mathrm{lb})$		
Number of returning revoilutions for anchor end bolt	2.5	

Reverse elutch drum end play " T_{2} "	$\begin{gathered} 0.55-0.90 \mathrm{~mm} \\ (0.0217-0.0354 \mathrm{in}) \end{gathered}$	
Thickness of oil pump tirust washer	Thickness mm (in)	Part number
	0.7 (0.028)	31528-21×00
	0.9 (0.035)	31528-21X01
	1.1 (0.043)	31528-21×02
	1.3 (0.051)	31528-21×03
	1.5 (0.059)	31528-21×04
	1.7 (0.067)	31528-21X05
	1.9 (0.075)	31528-21×06

REMOVAL AND INSTALLATION

Mantud control lirkage	
Number of feturning revolutans for lock nul	1
Lock nat tightening torque	$\begin{gathered} 11-15 \mathrm{~N} \cdot \mathrm{~m} \\ (1 . \mathrm{f}-1.5 \mathrm{~kg}+\mathrm{m}, \mathrm{~B}+11 \mathrm{ft}+\mathrm{lb}) \end{gathered}$
Distance between end of clukch housing and torque converter	2 e .0 mm (1.024 in) or moze
Dive plate ranout limit	$0.5 \mathrm{~mm}(0.020 \mathrm{in})$

OIL PUNP AND LOW ONE-WAY CLUTCH

Oil pump clearance man (in) Cam ring - ail pump housing Standard	$\begin{gathered} 0.01-0.004\{0.0004- \\ 0.6009\} \end{gathered}$
Rotor, vanes and eontrol piston - oil purfip housing Standard	$\begin{gathered} 0.03-0.044\{0.0012- \\ 0.0017) \end{gathered}$
Seal ring clearance mm (in) Standard Allowasie timit	$\begin{gathered} 0.10-0.25(0.0039-0.0098) \\ 0.25(0.0098) \end{gathered}$

TOTAL END PLAY

Total end play ' T_{1} "	$\begin{gathered} 0.25 \times 0.55 \mathrm{n} 7 \pi \\ (0.0098-0.0217 \mathrm{in}\} \end{gathered}$	
Thickness of ail pump cover bearing zace	Thicikness mim (in)	Part number
	0.8 (0.031)	31429-21×00
	1.0 (0.039)	31429-21×01
	1.2 (0.047)	31429-21×02
	1.4 (0.055)	31429-21X03
	$1.5(0.063)$	$31420-21 \times 04$
	1.8 (0.071)	31429-21×05
	2.0 (0.079)	31429-21×06

Specifications and Adjustment－RE4R03A

VEHICLE SPEED WHEN SHIFTING GEARS

T＊rottle position	Vehicle speed $\mathrm{km} / \mathrm{h}(\mathrm{MPP})^{\text {a }}$					
	$\mathrm{D}_{1} \rightarrow \mathrm{D}_{2}$	$\mathrm{D}_{2} \rightarrow \mathrm{D}_{3}$	$\mathrm{D}_{3} \rightarrow \mathrm{D}_{6}$	$\mathrm{D}_{4} \rightarrow \mathrm{D}_{3}$	$\mathrm{D}_{3} \rightarrow \mathrm{D}_{2}$	$\mathrm{D}_{2} \rightarrow \mathrm{D}_{1}$
Fult throtile	$\begin{gathered} 68-72 \\ (42-45) \end{gathered}$	$\begin{aligned} & 120-128 \\ & (75+80) \end{aligned}$	$\begin{gathered} 183-193 \\ (114-120) \end{gathered}$	$\begin{gathered} 677-687 \\ 1110 \cdot[169 \end{gathered}$	$\begin{gathered} 111 \cdot 119 \\ (69-74) \end{gathered}$	$\begin{gathered} 47-51 \\ (29-32) \end{gathered}$
Halt throtie	$\begin{gathered} 47-51 \\ (29-32) \end{gathered}$	$\begin{aligned} & 89-95 \\ & (55-59) \end{aligned}$	$\begin{aligned} & 136-744 \\ & 185-891 \end{aligned}$	$\begin{aligned} & 118-526 \\ & (73-78) \end{aligned}$	$\begin{gathered} 79-85 \\ (40-53) \end{gathered}$	$\begin{aligned} & 10-14 \\ & (0-9) \end{aligned}$

VEHICLE SPEED WHEN PERFORMING AND RELEASING LOCK－UP

Throtite position	O．D．switch ［Shift range］	Vehicle speed $\mathrm{krm} / \mathrm{h}(\mathrm{MPI}+)$	
		LOCk－揞 ＇$O N$＂	Lock－sp ＂OFF＂
Fuil throtile	$\begin{gathered} \text { ON } \\ {\left[D_{4}\right]} \end{gathered}$	$\begin{gathered} 184-192 \\ (114-119) \end{gathered}$	$\begin{gathered} \$ 78-\frac{186}{} \\ \left\{11-\frac{1}{1} 6\right\} \end{gathered}$
	$\begin{aligned} & \mathrm{OFF} \\ & \mathrm{OF}_{3} \mathrm{I} \end{aligned}$	$\begin{aligned} & 120-\div 28 \\ & (75-80) \end{aligned}$	$\begin{aligned} & 111-779 \\ & (69-74) \end{aligned}$
Half throttle	$\begin{aligned} & \text { ON } \\ & {\left[\mathrm{D}_{4}\right]} \end{aligned}$	$\begin{aligned} & 136-\$ 44 \\ & (95-89) \end{aligned}$	$\begin{aligned} & 117-125 \\ & (73-78) \end{aligned}$
	$\begin{aligned} & \mathrm{OHF} \\ & {\left[\mathrm{D}_{3}\right]} \end{aligned}$	$\begin{gathered} 91-99 \\ (57-62) \end{gathered}$	$\begin{gathered} 86-94 \\ (53-58) \end{gathered}$

stall revolution

Sta⿰⿰三丨⿰丨三一灬 revofution zom
－2，950－3，200

LINE PRESSURE

Englne speed rpm	Line pressure kPa（0af，kg／cris ${ }^{\text {a }}$ ，psi）	
	0， 2 and 1 ranges	R range
fole	$\begin{gathered} 412-490 \\ (4.72-4.90 \\ 4.2-5.0,60-71) \end{gathered}$	$\begin{gathered} 609-647 \\ (6.08-6.47, \\ 6.2-6.6 .88-94) \end{gathered}$
Stal	$\begin{gathered} 1,020-1,098 \\ (10.20-10.98 \\ 10.4 \cdot 17.2,148 \cdot 159\} \end{gathered}$	$\begin{gathered} 1.422-1.500 \\ (14.22-15.00, \\ 14.5 \cdot 45.3,206-218) \end{gathered}$

Unit: min (in)

ACCUMULATOR O-RING

Accumulator	Diameter mm (in)			
	A	7	C	D
Small diameter and	29 (1.74)	32 (1.26)	45 (1.77)	29 (1.f4)
Large diameter and	45 (1.77)	50 (1.97)	50 (1.97)	45 (1.77)

CLUTCHES AND BRAKES

Reverse clutch	3	
Number of drive plates		
Number of driven plates	3	
Thickness of drive plate man (in) Standard Wear firsit		079)
Clearance mm (ins) Standard Altowable lamik	$\begin{gathered} 0.5-0.8(0.020+0.034) \\ 1.2(0.047) \end{gathered}$	
Fhickness of retainding phate	Thfcikness $m m(i n)$	Part number
	$\begin{aligned} & 4.4(0.173) \\ & 4.6(0.181) \\ & 4.8(0.189\} \\ & 5.0(0.197) \end{aligned}$	$\begin{aligned} & 31537-57 \times 01 \\ & 31537+51 \times 00 \\ & 31537-51 \times 01 \\ & 31537-51 \times 02 \end{aligned}$
Hfgh clutch		
Nurmber of drive plates	7	
Number of driven plates	$7+1$	
Thickness of drive plate thm (in)		063) 055)
Clearance mms (if) Standard Allowable limt	1.8-2.2 (0.071-0.087)	
Thictness of retaining plate	Thickness mm (in)	Part Fumber
	4.0 (0.157)	31537-51×19
	4.2 (0.665)	31537-5才 $\times 60$
	4.4 (0.173)	31537-51)61
	4.6 (0.18者)	31537-51×00
	4.8 (0.169)	31537-51×07
	5.0 (0.197)	31537-51 $\times 02$

Forward clutch	8	
Number of drive plates		
Nsimber of driven plates	8	
Thickness of drive plate man (in) Standard Wear imitit		$.079)$ (069)
Clearafne $\mathrm{mm}(\mid n)$ Standard Allowabie limit	$\begin{gathered} 0.45-0.85(0.0577-0.0335) \\ 2.45(0.0965) \end{gathered}$	
Fhickness of retaining plate	Thickness mm (in)	Part number
	$\begin{aligned} & 4.2(0.165) \\ & 4.4(0.173) \\ & 4.5(0.181) \\ & 4.8(0.189) \\ & 5.0(0.197) \\ & 5.2(0.205) \end{aligned}$	$\begin{aligned} & 37537-51 \times 67 \\ & 37537-51 \times 05 \\ & 31537-51 \times 06 \\ & 31537-51 \times 07 \\ & 31537-51 \times 08 \\ & 31537-51 \times 00 \end{aligned}$
Overrun chutch Number of drive plates		
Number of driven plates	7	
Trickness of drive plate mm (1 m) Standard Wear timit	1.6	(063)
Clearance nom (in) Standard Allowable limit	$1.0-1.4$ 2.2	$.99-0.055\}$ 087)
Thickness of retaining plate	Thickness mm (in)	Part number
	3.8 (0.150)	31537.51x+1
	4.0 (0.157)	91537-51×12
	4.2 (0.165)	31537-31×13
	4.4 (0.173)	31537-51×14
	4.5 (0.181)	31537-51×15
	4.8 (0.189)	31537-5†X64

SERVICE DATA AND SPECIFICATIONS (S.D.S.)

Specifications and Adjustment - RE4R03A (Cont'd)

Low \& reverse brake	$2+6$	
Namber of drive plates		
Number of driven plates	8	
Thickness of drive plate men (in) Standard Wear limit		0633
Clearance mm (in) Standara Allowable limit	$1.1-1.5$ 2.5	43-0.059) 098)
Fhickness of tetaining plate	Thickness mm (in)	Part number
	$\begin{aligned} & 4.2(0.165) \\ & 4.4(0.173) \\ & 4.6(0.181) \\ & 4.8(0.189) \\ & 5.0(0.197) \end{aligned}$	$31567 \times 51 \times 10$ 31667.51×00 36667-51 $\times 01$ $3667-51 \times 02$ 31667-51×03
Brake bated Archof end bolt tightening torque $\quad \mathrm{N} \cdot \mathrm{m}(\mathrm{kg}-\mathrm{m}, \mathrm{ft}-\mathrm{l} \mathrm{b})$	$\begin{gathered} 4-6 \\ (0.4-0.6,2.9-4.3) \end{gathered}$	
Number of feturning revola tions for anchor end bolt	2.5	

REVERSE CLUTCH DRUM END PLAY

Reverse chutch drum eact play " $T_{2}{ }^{\prime \prime}$	$\begin{gathered} 0.55-0.90 \mathrm{~mm} \\ (0.0217-0.0354 \mathrm{in}) \end{gathered}$	
Thicikness of oil purtip thrust washer	Thickness mm (in)	Part number
	$0.7(0.028)$	$315328+21 \times 00$
	0.9 (0.035)	35528-27x01
	$1.1(0.043)$	37529-27x 02
	1.3 (0.05])	37528-211003
	1.5 (0.059)	31528-21×04
	1.7 (0.087)	31528-21)05
	1.9 (0.075)	31528-21×06

REMOVAL AND INSTALLATION

Manazal control intkage	
Number of retarning revolutions tor lock fut	1
Lock nut fightenitg torque	$\begin{gathered} 11=15 \mathrm{~N} \cdot \mathrm{~m} \neq \\ \{1.1-1.5 \mathrm{~kg}-\mathrm{m}, \mathrm{~g}+11 \mathrm{t}-\mathrm{fb}) \end{gathered}$
Distance betwaen end of ctutch kousing and torgue converter	25.0 rmm (0.984 in) or more
Orive plate funout limit	$0.5 \mathrm{~mm}(0.020 \mathrm{in})$

Oll. PUMP AND LOW ONE-WAY CLUTCH

Oil purmp clearance min (in) Cam ring - oil pump holising Standard	0.01-0.024 (0.0004-0.00¢9)
Fotor, vanes and control piston - oil pump housimg Standard	0.03-0.044 $0.0012-0.0017\}$
Seaf ring cieazance rima (in) Standard 	$\begin{gathered} 0.10-0.25(0.0039-0.0098) \\ 0.25(0.0098) \end{gathered}$

TOTAL END PLAY

Total end play ' 'T,	$\begin{gathered} 0.25-0.55 \mathrm{~mm} \\ \text { (0.0095-0.0217 in } \end{gathered}$	
Thickness of pil pamp cover bearing race	Théckness mif (it)	Payt number
	0.80 (0.031)	31429-21×00
	1.0 (0.039)	31429-21×01
	1.2 (0.047)	31429-21×02
	1.4 (0.056)	31429-21003
	$1.6(0.063)$	$31429-21 \times 04$
	1.8 (0.071)	$31429-21 \times 05$
	$20.0 .079)$	31429-21×06

SECTION

CONTENTS

PREPARATION PD- 2
PROPELLER SHAFT PD. 6
ON-VEHICLE SERVICE (Final drive) PD-11
REMOVAL AND INSTALLATION PD-13
FINAL DRIVE PD-14
DISASSEMBLY PD-16
INSPECTION PD-20
ADJUSTMENT PD-21
ASSEMBLY PD-29
DIFFERENTIAL OLL COOLER SYSTEM PD-35
SERVICE DATA AND SPECIFICATIONS (S.D.S.) PD-41

PREPARATION

SPECIAL SERVICE TOOLS

Too number Toof name	Description		Unit application	
			R200V	R230V
ST38060002 Drive pinion fiange wrench		Removing and installing propelier shaft lock nut, and drive pinion lock nut Use Iwo holes and propelier shatt consecting bolt to hold companion flange.	x	-
KV38100800 Differential attachment		Mounting final drive (To use, make a new hole.) a: $156 \mathrm{~mm}(6.14 \mathrm{ln})$ - R200V $178 \mathrm{~mm}(\mathbf{7} .01 \mathrm{ln})$ - R230V	X	X
Sr3090S000 Drive pinion rear inner race patler set () ST30931000 Pulier (2) $5 T 30901000$ Base		Removing and installing drive pinion rear cone	x	-
ST3002S000 Drive pinton rear inner race puller set () $\$ 730021000$ Pulter (3) 5730022000 Ease		Removing and instatling drive pinion rear cone	-	X
ST33051001 Differential side bearing puller body	(7)	Removing and installing differentiai side bearing inner cone	X	x
ST33061000 DIfferential side bearing puller adapter		Removing and instaling differentiat side bearing inner cone	X	-
S730611000 Drift		Installing pinlon rear bearing outer race	X	X
ST30613000 Drift		Instaling pinion front bearing outer race	X	-

Tool number Tool name	Description	Unit application	
		R200V	R2304
KV38100200 Oif seal dritt	Instating side oil seal	x	-
KV38102510 Oll seal drift	Installing side oil seal	-	x
KV38100300 Drift	Instafling side bearing inner cone	x	-
KV38100600 Side bearling spacer drift	Installing sife bearing spacer	x	x
ST31275000 Prefoad gauge (1) G691030000 Torque wrench (2) HT62940000 Socket adapter (3) HT62900000 Socket adapter	(2) (3)Measuring pinion bearing preload and total preioad	x	X
H772400000 Slide hammer		X	x
KV38103950 Orive pinion height setting gauge (5) KV38103910 Dummy shaft (2) KV38100120 Height gauge (3) KV38400140 Stopper		x	-

PREPARATION

Toot number Tool name	Description	Unit application	
		R200V	A230V
KV38:076S0 Drive pinion heigh setting gauge (1) KV38107610 Dummy shaft (2) KV3E107650 Rear bearing spacer (3) KV38107640 Front bearing spacer KV38107620 Height gauge (5) KV38107660 Side bearing adapter (1) KV38107630 Adapter shaft	Selecting pinion height adjusting washer	-	x

PREPARATION

COMMERCIAL SERVICE TOOLS

Tool name	Description		Unit application	
			H200V	R230V
Drith		Installing pinien rear bearing outer race a: 59 mm (3.50 ln) dia. - R200V 99 mm (3.90 in) dia. - R230V b: $\mathbf{2 0 0} \mathrm{mm}(\mathbf{7 . 8 7} \mathrm{fi})$	x	x
Oil seal drift		Installing front oil seal a: $25 \mathrm{~mm}(3.35 \mathrm{in})$ dia. b. $69 \mathrm{~mm}(2.72 \mathrm{in})$ dla.	-	x
Depth micrometer		Measuring bearing height	x	x
Dritt		Installing pinion front bearing outer race a: 73 man (3.11 ln) dia.	-	x
Dritt	a	Installing side bearing inner cone a: $\mathbf{6 4 ~ m m}$ (2.52 in) tat. b: $55.5 \mathrm{~mm}(2.185 \mathrm{in})$ dita.	-	x
Adapter		Removing and installing differental side bearing inner cone a: $54 \mathrm{~mm}(2.13 \mathrm{in}) \mathrm{dtm}$. b: $39 \mathrm{~mm}(\mathbf{1 . 5 4} \mathrm{in}) \mathrm{dta}$.	-	x
Drive pinion fiange wrench		Removing and installing propeller shatt lock nut, and drive pinion lock ntat. a: $107 \mathrm{~mm}(4.21 \mathrm{in}) \mathrm{dta}$. b: $94 \mathrm{~mm}(3.70 \mathrm{mf}) \mathrm{dm}$. c: $50 \mathrm{~mm}(1.97 \mathrm{ha})$ dla.	-	x

On-vehicle Service

PROPELLER SHAFT VIBRATION

If vibration is present at high speed, inspect propeller shaft runout first.

1. Raise rear wheels.
2. Measure propeller shaft runout at indicated points by rotating final drive companion flange with hands.

Runout limit: 0.6 mm (0.024 in)

```
Propeller shaft runout measuring points:
    Distance "A":
        162 mm (6.38 in)
    Distance " B":
        3S71A: }172\textrm{mm}(6.77 in
        3S80A-VL107: }200\textrm{mm}(7.87\textrm{in}
        Distance 'C'':
        3S71A: }\quad192\textrm{mm}(7.56 \textrm{in}
        3580A.VL107: 200 mm (7.87 m)
```

3. If runout exceeds specifications, disconnect propeller shaft at final drive companion flange. Rotate companion flange $90^{\circ}(3 S 71 A)$ or 60° (3580A-VL107), and reconnect propelier shaft and check runout.
Repeat above operation when companion flange is rotated 180° (3S71A) or 120° ($3580 \mathrm{~A}-\mathrm{VL} 107$) and 270° (3571A) or 180° ($3580 \mathrm{~A}-\mathrm{VL} 107$), respectively. Also, for 3S80A-VL107, the operation should be repeated at 240° and 300°. Securely connect propeller shaft at the point where the smallest runout of the three measurements occurs.

Runout limit: 0.6 mm (0.024 in)
4. Check runout again. If runout still exceeds specifications, replace propelter shaft assembly.
5. Perform road test.

APPEARANCE CHECKING

- Inspect propeller shaft tube surface for dents or cracks. If damaged, replace propeller shaft assembly.
- If center bearing is noisy or camaged, replace center bearing.

Removal

- Put matchmarks on flanges and separate propeller shaft from final drive.

PROPELLER SHAFT

Removal (Cont'd)

- Draw out propelier shaft from transmission and plug up rear end of transmission rear extension housing.

Installation

- Temporarily install differential companion flange and flange yoke so that their alignment marks (original marks) are located as close to each other as possible.
- Turn propeller shaft until alignment marks face straight upward. Securely fasten propeller shaft so that lower side wall of concave flange yoke will touch lower side wall of convex companion flange.

Inspection

- Inspect propeller shaft runout. If runout exceeds specifications, replace propeller shaft assembly.

Runout limit: 0.6 mm (0.024 in)

- Inspect journal axial play.

If the play exceeds specifications, replace propeller shaft assembly.

Journal axial play: 0 mm (0 In)

Disassembly

CENTER BEARING

1. Put matchmarks on flanges, and separate 2nd tube from 1st tube.
2. Put matchmarks on the flange and shaft.
3. Remove locking nut with Tool.

Tool number:
ST38060002
4. Remove companion flange with puller.
5. Remove center bearing with Tool and press.

Tool number: ST30031000

Assembly

CENTER BEARING

- Install center bearing with insulator's protrusion side facing front of vehicle.
- Apply a coat of multi-purpose lithium grease containing molybdenum disulfide to the end face of the center bearing and both sides of the washer.
- Stake the nut. Always use new one.
- Align matchmarks when assembling tubes.

Front Oil Seal Replacement (R200V)

CAUTION:
For final drive models using collapsible spacer (R230V), bearing preload must be adjusted whenever companion flange is removed. In order to do this adjustment correctiy, final drive overhaul is required.

1. Remove propeller shatt.
2. Loosen drive pinion nut with Tool.

Tool number: ST38060002
3. Remove companion flange.
4. Remove front oil seal.
5. Appiy multi-purpose grease to sealing lips of oll seal. Press front oil seal into carrier.
6. Install companion flange and drive pinion nut.
7. install propeller shaft.

Side Oll Seal Replacement

1. Remove drive shafts.

Refer to RA section.
2. Remove final drive side flange.
3. Remove oil seal.

Side Oil Seal Replacement (Cont'd)

4. Apply multi-purpose grease to sealing tips of oil seal. Press-fit oil seal into carrier with Tool.

Tool number:
KV38100200 - R200V -
KV38102510 - R230V -
5. Install tinal drive side flange and drive shath.

Removal

1. Remove exhaust tube.
2. Remove stabilizer bar.

3 Remove propeller shaft.
Plug rear end of transmlssion rear extension housing.

CAUTION:

- Be careful not to damage splines, sleeve yoke and transmission rear oll seal when removing propeller shaft.

4. Discomnect drive shafts and pull them to wheel side with a wire.
5. Disconnect the following items if applicable.

- Oil cooler warning switch connector
- Oil cooler temperature switch connector
- A.B.S. sensor connector
- Hoses to oil cooier

When disconnecting oil cooler hoses, put a tray underneath.
6. Support final drive with a jack.
7. Remove securing bolts and nuts from final drive.
8. Move final drive forward and lower with jack.

Installation

- Fill final drive with recommended gear oil.

Model R200V

[^11]Model R230V

SPDO23A

Pre-inspection

Before disassembling final drive, perform the following inspection.

- Total preload

1) Turn drive pinion in both directions several times to set bearing roliers.
2) Check total preioad with Tool.

Tool number: ST3127S000
Total preload:
$1.4-1.7 \mathrm{~N} \cdot \mathrm{~m}$
(14-17 kg-cm, 12-15 ln-lb)

- Ring gear to drive pinion backlash

Check ring gear-to-drive pinion backlash with a dial indicator at several points.

Ring gear-to-drive pinion backlash:
$0.10 \cdot 0.15 \mathrm{~mm}(0.0039-0.0059 \mathrm{in})$

- Ring gear runout

Check runout of ring gear with a dial indicator.
Runout limit:
$0.05 \mathrm{~mm}(0.0020 \mathrm{ln})$

- Tooth contact

Check tooth contact. (Refer to Adjustment.)

Differential Carrier

1. Using two 45 mm (1.77 in) spacers, mount carrier on Tool. Tool number: KV38100800
2. Paint or punch matchmarks on one side of the side bearing cap so it can be properly reinstalled.
Bearing caps are ine-bored during manufacture. Replace them in their proper positions.

DISASSEMBLY

Differential Carrier (Cont'd)

3. Remove side bearing caps.
4. Lift differential case assembly out with Tool.

Tool number: HT72400000

Keep the side bearing outer races together with inner cone do not mix them up.
Also, keep side bearing spacer and adjusting shims together with bearings.
5. Loosen drive pinion nut and pull off companion flange. Tool number: ST38060002 - R200V -

DISASSEMBLY

Differential Carrier (Cont'd)

SFPezo
6. Take out drive pinion (together with rear bearing inner race, bearing spacer and adjusting washer).
7. Remove oll seal.
8. Remove front bearing inner race.
9. Remove side oil seal.
10. Remove pinion bearing outer races with a brass drift.
11. Remove pinion rear bearing inner race and drive pinion height adjusting washer with a suitable tool.

Differential Case

1. Remove side bearing inner cones.

To prevent damage to bearing, engage pulter jaws in groove. Tool number:
(A) $\mathbf{S T 3} 3051001$
(6) $\mathbf{S T 3 3 0 6 1 0 0 0}$ - R200V --

DISASSEMBLY

Differential Case (Cont'd)

2. Loosen ring gear bolts in a criss-cross fashion.
3. Tap ring gear of the differential case with a sof hammer.

Tap evenly all around to keep ring gear from binding.

4. Loosen screws on difierential cases A and B .
5. Separate differential cases A and B .

CAUTION:

Assemble differemial case firmly.

INSPECTION

Contact Surfaces

1. Clean the disassembled parts in suitable solvent and blow dry with compressed air.
2. If following surfaces are found to be burred or scratched, smooth with oil stone.

- Differential case A
- Differential case B
- Side gear
- Pinion mate gear
- Pinion mate shaft

3. Check viscous coupling for oil leakage. If necessary, replace it with a new one.

Bearing

1. Thoroughly clean bearing.
2. Check bearings for wear, scratches, pitting or flaking.

Check tapered roller bearing for smooth rotation. If damaged, replace outer race and inner cone as a set

To avoid contusion while calculating thickness of washers, it is absolutely necessary to stay with the metric system. If you measure anything in inches, the results must be converted to the metric system.

Drive Pinion Height

1. Prepare Tools for pinion height adjustment.

- R200V -
(1) Dummy shaft (KV38103910)
(2) Height gauge (KV38100120)
(3) Stopper (KV38100140)
- R230V -
(7) Dummy shaft (KV38107610)
(2) Rear bearing spacer (KV38107650)
(3) Front bearing spacer (KV38107640)
(4) Height gauge (KV38107620)
(3) Side bearing adapter (KV38107660)
(6) Adapter shaft (KV38107630)

2. Lubricate bearings and set Tools as shown. Tighten nut carefully until bearings reach specified preload.

- R200V -

Tool: Dummy shaft (KV38103910)
Bearing preload:
1.0 - $1.4 \mathrm{~N} \cdot \mathrm{~m}(10-14 \mathrm{~kg}-\mathrm{cm}, 8.7-12.2 \mathrm{in}-\mathrm{lb})$

- R230V -

Tool:
(9) Dummy shat (KV38107610)
(2) Rear bearing spacer (KV38107650)
(3) Font bearing spacer (KV38107640)
(4) Height gauge (KV38107620)

Bearing preload:

$1.8-2.6 \mathrm{~N} \cdot \mathrm{~m}(18-27 \mathrm{~kg}-\mathrm{cm}, 16-23 \mathrm{~m}-\mathrm{lb})$

ADJUSTMENT

Drive Pinion Height (Cont'd)

3. Attach Tools to gear carrier.

- R200V -

Measure clearance between height gauge and dummy shaft face.
Add $0.5 \mathrm{~mm}(0.020 \mathrm{in})$ to your measurement and write this figure down.
-R 230 V -
Measure clearance between height gauge and adapter shaft face and write this figure down.

ADJUSTMENT

Drive Pinion Height (Cont'd)

4. Correct the pinion height washer size by reterring to the "pinion head number."
There are two numbers painted on the pinion gear. The first one refers to the pinion and ring gear as a matched set and should be the same as the number on the ring gear. The second number is the "pinion head height number", and it refers to the ideal pinion height from standard for quletest operation. Use the following chart to determine the correct pinion beight washer.

Pinion head height number	Add of remove from the standasd pinlon height waaher thlckneat messurement
-6	Add $0.06 \mathrm{~mm}(0.0024 \mathrm{in})$
-5	Add $0.05 \mathrm{~mm}(0.0020 \mathrm{in})$
-4	Add 0.04 mm (0.0016 mm)
-3	Add 0.03 mm (0.0012 m)
-2	Add 0.02 mm (0.0008 in)
- 1	Add 0.01 mm (0.0004 in)
0	Use the selected washer thickness
$+1$	Subtract 0.01 mm (0.0004 in)
+2	Subtract $0.02 \mathrm{~mm}(0.0008 \mathrm{in})$
$+3$	Subtract $0.03 \mathrm{~mm}(0.0012 \mathrm{in})$
+ 4	Subtract $0.04 \mathrm{~mm}(0.0016 \mathrm{in})$
$+5$	Subtract $0.05 \mathrm{~mm}(0.0020 \mathrm{in})$
$+6$	Subtract $0.06 \mathrm{~mm}(0.0024 \mathrm{~m})$

5. Select the correct pinion height washer.

Drive pinion height adjusting washer:
Refer to S.D.S.

ADJUSTMENT

Side Bearing Preload

1. To simplify the job, make a chart like the one betow to organize your calculations.

LETTERS	value	
	8200V	R230V
A: Left thousing		
B: Right housing		
C: Differential case		
D. pifterential case		
H: $(+)$ or (-) ring gear		
E: Left side bearing R200V ($=21$ - Measured height)		-
R230V (" $=27$ - Measured height)	-	
F: Right side bearing R200V ($=21$ - Measured height)		-
R230V ($=27$ - Measured height)	-	
G: Side bearing spacer ($=8.1$ - measured thickness)		
x :	1.97	1.95
Y :	2.07	2.05

2. Write the following numbers down in the chart. If numbers for $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ and H are not given, regard them as zero.
A \& B: Figures marked on gear carrier

C \& D: Figures marked on differential case

Side Bearing Preload (Cont'd)

H : Figure marked on ring gear
Do not confuse negative and positive values.
3. Calcutate " E " and " F " as follows:

- R200V -
$E \& F=21 \mathrm{~mm}(0.83 \mathrm{in})-$ Measured bearing height
- R230V -
$E \& F=27 \mathrm{~mm}(1.06 \mathrm{in})$ - Measured bearing height

Bearing height can be measured as follows:
a. Measure height of bearing race which will be used as a base for the opposite side of a side bearing assembly.
b. Set bearing assembly to be measured on the base race and measure the total height.
Lubricate bearing assembly and turn it several times to setlle it on the base for accurate measurement.
c. Subtract base race height from total height.
4. Calculate " G ".

G: This is the difference in thickness of side spacer from standard width [8.10 mm (0.3189 in)].
$\mathrm{G}=8.10 \mathrm{~mm}(0.3189 \mathrm{in})-$ Measured thickness

ADJUSTMENT

Side Bearing Preload (Cont'd)

LETTERS	VALUE	
	R200V	R230V
A: Left housing		
8: Right housing		
C. Differential case		
D. Differential case		
H: $\{+$) or (-): ring gear		
E. Left slde bearing R200V ($=21$ - Measured height)		-
R230V ($=27$ - Measured height)	-	
F: Right side bearing R200V (= 21 - Measured helght)		-
$\begin{aligned} & \text { R230V } \\ & (=27-\text { Measured height }) \end{aligned}$	-	
G: Side bearing spacer (= 8.f-measured thickness)		
X :	1.97	1.95
Y Y:	2.07	2.05

Calculations:
Side bearing spacer is used on the right
Left side washer thickness

$$
T_{1}=(A-C+D-H) \times 0.01+E+Y
$$

Right side washer thickness
$T_{2}=(B-D+H) \times 0.01+F+G+X$
Side bearing spacer is used on the left
Left side washer thickness
$\mathbf{T}_{1}=(\mathbf{A}-\mathbf{C}+\mathbf{D}-\mathbf{H}) \times \mathbf{0 . 0 1}+\mathbf{E}+\mathbf{G}+\mathbf{X}$
Right side washer thickness

$$
T_{2}=(B-D+H) \times 0.01+F+Y
$$

ADJUSTMENT

Side Bearing Preload (Cont'd)

Example for R200V which has a side bearing spacer on the left:

$$
\begin{array}{ll}
A=4 & E=0.18 \\
B=3 & F=0.15 \\
C=5 & G=0.08 \\
D=6 & X=1.97 \\
H=-2 & Y=2.07
\end{array}
$$

Left side washer thickness (with spacer)
$T_{1}=(\mathrm{A}-\mathrm{C}+\mathrm{D}-\mathrm{H}) \times 0.01+\mathrm{E}+\mathrm{G}+\mathrm{X}$
$\left.\begin{array}{rrr|r|}\hline 4 & A \\ -5 & -\mathrm{C}\end{array}\right)$

Right side washer thickness (without spacer)

$$
T_{2}=(B-D+H) \times 0.01+F+Y
$$

5. Select the proper shims. (Refer to S.D.S.)

If you cannol find the desired thickness of shims, use shims with the total thickness closest to the calculated value.

Tooth Contact

Checking gear tooth contact pattern is necessary to verify correct relationship between ring gear and drive pinion.
Hypoid gear set which is not positioned properly in relation to one another may be nolsy, or have short life or both. With the checking of gear tooth contact pattern, the most desirable contact for low noise level and long life can be assured.

1. Thoroughly clean ring gear and drive pinion teeth.
2. Sparingly apply a mixture of powdered ferric oxide and oil or equivalent to 3 or 4 teeth of ring gear drive side.
3. Hold companion flange steady by hand and rotate the ring gear in both directions.

[^12]

To correct, increase thickness of pinion heinht adjusting washer in order to bring drive pinion close to fing gear.

Correct tooth contect

To correct, redsace thickness of pinion height adjusting washer in order to reake drive pinton go sway from ring getaf.

Differentlal Case

THRUST WASHER SELECTION

Whenever side gears or pinion mate gears are replaced, select suitable thrust washers as follows:

1. Clean side gears and pinion mate gears using white gasoline.
2. Betore assembling gears, apply hypoid gear oil to frictional surfaces.
3. Install the previously removed thrust washer on right side gear. On left side gear, install a suitable thrust washer. Temporarily tighten differential cases using two screws.
4. Position differential assembly so that right side gear is on the upper side. Place a 0.03 mm (0.0012 in) feeler gauge (for example) between right side gear and thrust washer.

Do not insert feeler gauge in oll groove portion of differential

 case.5. Also place a $0.03 \mathrm{~mm}(0.0012 \mathrm{in})$ additional feeler gauge between right side gear and thrust washer so that it is positioned diagonal to (180° apart from) the feeler gauge described previously.
6. Rotate right side gear with a suitable toot attached to splines.
If right side gear cannot be rotated, replace thrust washer used on left side gear with a thinner one.
7. Replace both $0.03 \mathrm{~mm}(0.0012 \mathrm{in})$ feeler gauges with 0.10 $\mathrm{mm}(0.0039 \mathrm{in})$ gauges. At this point, make sure right side gear does not rotate. II it does, replace thrust washer on left side gear with a thicker one so that tight side gear does not rotate.
8. As explained in above example, select suitable thrust washers to ensure that:
a) Both side gears rotate. [0.03 $\mathrm{mm}(0.0012 \mathrm{in})$ feeler gauges are used in this case.]
b) Side gear is held stationary. $10.10 \mathrm{~mm}(0.0039 \mathrm{in})$ feeler gauges are used in this case.)
(Refer to S.D.S.)

ASSEMBLY

1. Install differential cases A and B.

ASSEMBLY

Differential Case (Cont'd)

2. Place differential case on ring gear.
3. Apply locking sealant to ring gear bolts, and install them. Tighten boits in a criss-cross fashion, lightiy tapping bolt head with a hammer.

Pigion front

SPD976

4. Press-fit side bearing inner cones on differential case with Tool.

Tool number:
(A) KV38100300 - R200V -
(B) ST33061000 - R200V -

Differential Carrler

1. Press-fit front and rear bearing outer races with Tools.

Tool number:
(A) suitable tool
(B) $\mathbf{S T 3 0 6 1 1 0 0 0}$
(C) ST30613000-R200V -
2. Select pinion bearing adjusting washer and drive pinion bearing spacer, referring to ADJUSTMENT.
3. Install selected drive pinion helght adjusting washer in drive pinion, and press-itt pinion rear bearing inner cone in it, using press and Tool.

Tool number:
ST30901000 - R200V -

ASSEMBLY

Differential Carrier (Cont'd)

4. Place pirion front bearing inner cone in final drive housing.
5. Set drive pinion assembly (as shown in figures at left) in differential carrier and install drive pinion, with press and a suitable tool.
Stop when drive pinion touches bearing.
Apply multi-purpose grease to pinion rear bearing inner race, pinion front bearing inner race and front plot bearing.
6. Apply multi-purpose grease to cavity at sealing lips of oil seal. Install front oil seal with a suitable tool.

ASSEMBLY

Differential Carrier (Cont'd)

7. Install companion flange.

- R200V .

Tighten pinion nut to specified torque with Toal.

- R230V -

Tighten pinion nut to $127 \mathrm{~N} \cdot \mathrm{~m}$ ($13 \mathrm{~kg}-\mathrm{m}, 94 \mathrm{ft}-\mathrm{lb}$).
Make sure that threaded portion of drive pinion and pinion nut are free from oll or grease.

Tool number:

ST38060002 - R200V -
8.

- R200V -

Turn drive pinion in both directions several times, and measure pinion bearing preload.

Pinion bearing preload:
1.1-1.4 N-m
(11-14 kg-cm, 9.5-12.2 in-lb)
When pinion bearing preload is outside the specifications, replace pinlon bearing adjusting washer and spacer with a different thickness.

- R230V -

Tighten the pinton nut by very small degrees until the specified preload is achieved. When checking the preload, turn the drive pinion in both directions several times to set the bearing rollers.

Pinion bearing preload:
$1.8-2.6 \mathrm{~N} \cdot \mathrm{~m}$
(18-27 kg-cm, 16 - $23 \mathrm{~mm}-\mathrm{lb}$)
This procedure will have to be repeated if:

- Maximum preload is achieved before the minimum pinion nut forque is reached.
- Minimum preload is not achieved before the maximum pinion nut torque is reached.

9. Install differential case assembly with side bearing outer races into gear carrier.

Differential Carrier (Cont'd)

10. Insert left and right side bearing adjusting washers in place between side bearings and carrier.
11. Drive in side bearing spacer with Tool.

Tool number:

KV38100600
12. Align mark on bearing cap with that on gear cartier and install bearing cap on gear carrier.
13. Check runout of ring gear with a dial indicator.

Runout limit:

$0.05 \mathrm{~mm}(0.0020 \mathrm{~m})$

- If backlash varies excessively in different places, foreign matter may be caught between the ring gear and the differential case.

Differential Carrier (Cont'd)

14. Measure ring gear-to-drive pinion backlash with a dial indicator.

Ring geaf-to-drive pinion backlash:
$0.10-0.15 \mathrm{~mm}(0.0039-0.0059 \mathrm{in})$

- If backlash is too small decrease thickness of left washer and increase thickness of right washer by the same amount.
If backlash is too great, reverse the above procedure.
Never change the total amount of washer thickness as this will change the bearing preload.
- If the backlash varies greatly when the ring gear runout is within the specified range, replace the hypoid gear set or differential case.

15. Check sotal preload with Tool.

When checking preload, turn drive pinion in both directions several times to seat bearing rollers correctly.

Total preload:
Value more than $0.29 \mathrm{~N} \cdot \mathrm{~m}(3.0 \mathrm{~kg}-\mathrm{cm}, 2.6 \mathrm{in}-\mathrm{lb})$ added on measured value of drive pinion preload

- If preload is too great, decrease the same amount of washer thickness from each side.
- If preload is too small, increase the same amount of washer thickness to each side.
Never increase or decrease different amounts of washer thickness for each side as thls will change ring gear-to-drlve pinion backlash.

16. Recheck ring gear-to-drive pinion backlash because increase or decrease in thickness of washer will cause change of ring gear-to-pinion backlash.
17. Check tooth contact.

Refer to ADJUSTMENT.
18. Install rear cover.

Description

M/T MODEL

- The differential and transmission oil pumps automatically repeat ON-OFF operation according to the differential gear oil temperature.

```
OFF }->\mathrm{ ON 130
ON }->\mathrm{ OFF 120
```

However, the pumps will not operate when the vehicle speed is less than $120 \mathrm{~km} / \mathrm{h}$ (75 MPH).

- When the oil temperature becomes excessively high, the warning lamp in the combination meter will illuminate and both oil pumps will activate regardless of vehicle speed.

Differential gear oil:

```
    OFF }->\mathrm{ ON 180
    ON ->OFF 1500
```

Transmission gear oil:

$$
\begin{array}{ll}
\text { OFF } \rightarrow \text { ON } & 180^{\circ} \mathrm{C}\left(356^{\circ} \mathrm{F}\right) \\
\text { ON } \rightarrow \text { OFF } & 150^{\circ} \mathrm{C}\left(302^{\circ} \mathrm{F}\right)
\end{array}
$$

AIT MODEL

- The differential oil pump automatically repeats ON-OFF operation according to the temperature of the differential gear oil.
$\begin{array}{ll}O F F \rightarrow \text { ON } & 130^{\circ} \mathrm{C}\left(266^{\circ} \mathrm{F}\right) \\ \mathrm{ON} \rightarrow \text { OFF } & 120^{\circ} \mathrm{C}\left(248^{\circ} \mathrm{F}\right)\end{array}$
However, the pump will not operate when the vehicle speed is less than $10 \mathrm{~km} / \mathrm{h}$ (6 MPH).
- When the oil temperature becomes excessively high, the warning lamp in the combination meter will illuminate and the oil pump will activate regardless of vehicle speed.

OFF \rightarrow ON $180^{\circ} \mathrm{C}\left(356^{\circ} \mathrm{F}\right)$
ON \rightarrow OFF $150^{\circ} \mathrm{C}\left(302^{\circ} \mathrm{F}\right)$
Removal and Installation

DIFFERENTIAL OIL COOLER SYSTEM

Removal and Installation (Cont'd)

REMOVAL

The oil cooler assembly and the oil pump can be removed together or separately without removing the final drive.

1. Remove right side rear exhaust tube.
2. Disconnect right side drive shaft from finat drive.

Be careful not to damage drive shaft boot.
3. Disconnect oil cooler hoses which connect to tinal drive.

When disconnecting hoses, put a tray underneath to catch oil.
4. Remove securing nuts and bolts from oil cooler assembly.

5. Remove mounting bracket securing bolts.
6. Disconnect electric connector from oil pump.
7. Remove oil cooler assembly with oil pump.

INSTALLATION

Oil level and oil leak from hoses must be checked after the oil cooler has been operated.

Clrcuit Diagram

Wiring Diagram

L.H.D. MODEL

Wiring Diagram (Cont'd)

R.H.D. MODEL

Inspection

Thoroughly clean alt parts in cleaning solvent and blow dry with compressed air, if avallable.

OIL. PUMP ASSEMBLY

Replace oil pump assembly when motor does not rotate because of motor seizure or other damage.

SPEEDOMETER AMPLIFIER

Check speedometer amplifier operation as follows:

1. Disconnect differential oil pump cancel relay from connector and connect circuit tester to connector for the relay as shown.
2. Raise rear wheels.
3. Drive vehicle slowly and check the voltage.

M/T model:
Less than $120 \mathrm{~km} / \mathrm{h}$ ($\mathbf{7 5} \mathrm{MPH}$) ... Continuity exists.
More than $120 \mathrm{~km} / \mathrm{h}$ (75 MPH) ... Continuity does not exist.

A/T model:

Less than $10 \mathrm{~km} / \mathrm{h}$ (6 MPH) ... Continuity exists More than $10 \mathrm{~km} / \mathrm{h}(6 \mathrm{MPH}$) ... Continulity does not exist.

OIL COOLEA ASSEMBLY, OIL TUBE ASSEMBLY, OIL HOSE

If oil leakage is detected during removal, replace oil cooler assembly or oil tube.

Propeller Shaft

GENERAL SPECIFICATIONS

Engine	VG300E		VGWOOETT	
Tfaramission	M / T	A ${ }^{\text {I }}$	M/	A/T
Propeller shaft model	3S71A		3580A-VL107	
Nimber of joints	3			
Coupling method with transmission	Sleeve type			
Types of joufnal bearings	Shell type (non-disassembly type)		Shell type (non-disassembly type) $\times \mathbf{2}$, CVJ $\times 1$	
Dislance betweer yokes mmmentin	71.0 (2.795)		80.0 (3.150)	
Shat fength (Splder to spider) $\quad \mathrm{mm}(\mathrm{in})$ 1 st	606 (23.86)	510 (20.08)	606 (23.86)	489 (59.25)
2 nc	$533(21.22)$		$5088(20.00)$	
Shaft outer diameter mm (in) ist	75 (2.95)		B2.5 (3.252)	
2nd	75 (2.95)		B2.6 (3.253)	

*: Constant veloclty foint

INSPECTION AND ADJUSTMENT

Unit: mmin (in)

Propeller shaft model	3571A	3S80A-vL107
Journal axial play	0 (0)	
Propeller statt runout limit	$0.6(0.024)$	

Final Drive

GENERAL SPECIFICATIONS

Final drive moded	R 200 V	F230V
Ring gear pltch diameter mon (in)	205 (8.07)	230 (9.06)
Gear ratio	4.063	3.692
Number of teeth (Aing gear/Drive pinion)	49/12	48113
Oil capacity (approx.) ℓ (Imp pt)	1.5 (2-5/8)	2.1 (3-3/4)
Side bearing spacer location	Left	Aight

INSPECTION AND ADJUSTMENT (R200V)
Ring gear runout

Side gear adjustment

Side gear backlash (Clearance between side gear and differential case)

Available side gear thrust washers

Thickness mire (in)	Part number
0.80 (0.0315)	38424-40F60
0.83 (0.0327)	38424-40F6 \dagger
0.86 (0.0339)	38424-40F62
0.89 (0.0850)	38424-40F63
0.92 (0.0362)	38424-40F64
0.95 (0.0374)	38424-40F65
0.98 (0.0396)	38424-40F65
1.01 (0.0398)	30424-40F67
1.04 (0.0409)	38424-40F68
1.07 (0.0421)	38424-40F69
1.50 (0.0433)	38424-40F70
1. 幏 (0.0445)	38424-40F74
1. 66 (0.0457)	38424-40F72
1. 59 (0.0469)	38424-40F73
1.22 (0.0430)	38424-40574
1.25 (0.0492)	38424-40F75
1.28 (0.0504)	38424-40F76
1.31 (0.0516)	38424-40F77
1.34 (0.0528)	38424-40F78
1.37 (0.0539)	38424-40F79
1.40 (0.0551)	38424-40F80
1.43 (0.0553)	38424-40F8 ${ }^{\text {d }}$
1.46 (0.0575)	38424-40F82
1.49 (0.0587)	98424-40F83

Drive pinion height adjustment
Available pinion helght widusting washers

Thickness mm (in)	Parl number
3.09 (0.1277)	38154-P6017
3.12 (0.1228)	38154-76018
3.15 (0.1240)	38454-96019
$3.18(0.1252)$	39154-P6020
3.21 (0.1264)	38154-P6021
3.24 (0.1276)	38754-P\$022
3.27 (0.1287)	38754-P6023
3.30 (0.1299)	38154-P6024
3.33 (0.1311)	38154-P6025
3.36 (0.1323)	38754-P6026
3.39 (0.1335)	38154-P6027
3.42 (0.1346)	38154 P6028
3.45 (0.1358)	38154-96029
3.48 (0.1370)	38154-9030
3.51 (0.1382)	38154-P6021
3.54 (0.1394)	38154-99032
3.57 (0.1406)	38154-76003
3.60 (0.1417)	38154.70034
3.63 (0.1429)	$38154+9035$
3.66 (0.1441)	38154-P6036

Drive pinion preload adjustment

Drive plntion pfoload with front oil seal $\quad \mathrm{N}$ (T) ($\mathrm{kg}-\mathrm{cm}$, in-lb)	1.1-1.4 (11-14, 9.5-12.2)

Avaidable drive pinion bearing preload adjusting washors

Thickness mm (in)	Part number
$3.80-3.82(0.5496-0.1504)$	38125-61001
3.82-3.84 (0.1504-0.1512)	38126-61001
$3.84-3.86$ (0.1512-0.1520)	38127-61001
$3.86-3.88$ (0.1520-0.1528)	38128-61007
3.88-3.90 (0.7528-0.1535)	38129-6100 \dagger
$3.90-3.92$ (0.1536-0.1543)	$38130-61004$
3.92-3.94 (0.1543-0.1551)	38131-61001
3.94-3.96 (0. 5551×0.1559)	38132-61001
3.96 - 3.98 (0.1556 - 0.1567)	38135-61001
$3.98-4.00(0.1567-0.1575)$	38134-61001
4.00-4.02 (0.1575-0.1563)	32135-61001
4.02-4.04 (0.1583-0.159 $)$	38136-61001
4.04-4.06 (0.1591-0.1596)	38137-61001
4.06-4.08 (0.1598-0.1606)	38138-61001
4.08-4.10 $(0.1606-0.1614)$	38139-61001

Available drive pinion bearing pretoad adjusting spacers

Length min (in)	Part number
$45.60(1.7953)$	$38165-10 \mathrm{~V} 05$
$45.90(1.8071)$	$38165-10 \mathrm{~V} 06$
$46.20(1.8189)$	$38165-10 \mathrm{~V} 07$
$46.50(1.8307)$	$38165-10 \mathrm{~V} 00$
$46.80(1.8425)$	$38165-10 \mathrm{~V} 01$

Final Drive（Cont＇d）

Side bearing adjustment
Available side bearing adjusing washers

Thickness mm（im）	Paft number
2.00 （0．0787）	38453－N3100
2.05 （0．0807）	$38453-N 3101$
2.10 （0．0827）	38453－N310？
2． 15 （0．0846）	38453－N3103
2.20 （0．08心家）	38453－N3104
2.25 （0．0886）	38453－N3108
2.30 （0．0906）	38453－ N 3106
2.35 （0．0925）	38453－N3107
2.40 （0．0945）	38453－N3108
2.45 （0．0965）	38453－＊5799
2.50 （0．6984）	38453－N3110
2.55 （0．1004）	38453－N3117
2.60 （0．1024）	38453－N3112

Total preload

Total preload		Value of more than $0.29 \mathrm{~N} \cdot \mathrm{~m}$ 3． 3 kg－ctr． 2.6 is－ib）adried on to meastred vilue of drive pinipn prefoad
Fing gear backlash	mma（in）	$\begin{gathered} 0.10-0.15 \\ (0.0039-0.0059) \end{gathered}$

INSPECTION AND ADJUSTMENT（R230V）

Ring gear runout

Rifig gear rungut limit	$0.05(0.00 \% 0)$

Side gear adjustment

Side gear batklash	
（Clearance between side gearf	$0.03-0.09$
and dilierential case）	mm（in）

Avaitable side geay thrust washers

Thickness mm ¢int $^{\text {a }}$	Part number
1.10 （0．0433）	38424－40P71
1.15 （0．0．453）	38424－40P72
1.20 （0．0472）	38424.40 P 73
1.25 （0．0492）	38424－40P74
$1.30(0.0512)$	38424 －40F75
1.35 （0．0537）	38424－40P76
1.40 \｛0．055 ${ }^{\text {\％}}$ ）	38424－40P77
1.45 （0．0571）	30424.40 P 7 F
1.50 （0．0597）	36424－40P79

Drive pinion height adjustment
Available pinion height adjusting washers

Thickness mm（in）	Part number
2.59 （0．1020）	38154－40P00
$2.6190 .7028)$	38154－40P0才
2.63 （0．1035）	38154－40P02
2.65 （0．104	38154 －40P03
2.67 （0．1051）	$38154-40 \mathrm{P} 04$
2.69 （0．1059）	38154.49 PO 5
2.71 （0．1067）	38154－40－106
2.73 （0．1075）	38154－40P07
2.75 （0．1083）	38154－46P08
2.77 （0．1091）	38154.40 PO
2.79 （0．1098）	38154.40 P 10
2.81 （0．1106）	38154－40P11
$2.83(0.1114)$	38154－40P12
2.85 （0．1122）	38154－40P13
2.87 （9．1130）	38154－40P14
2.69 （0．1138）	38154－40P15
2.91 （0．1146）	38154．40P16
2.93 \｛0．1154\}	38154－40P17
2.95 （0．116t）	38154－40P18
2.97 （0．1169）	38154－40P19

Drive pinion preload adjustment

Drive pinion preload with front oil seal $N \cdot m ; k g-c m, i n-l b)$	$\begin{gathered} 1.8-2.6 \\ \{18-27,16-23\} \end{gathered}$

Side bearing adjustment

Avaitable side bearing adjusting washers

Thickress man（in）	Part numbea
2.00 （0．0787）	38453－40P：00
2.05 （0．0807）	38453－40P01
2.10 （0．0827）	3845340902
2.15 （0．0845）	38453－40P03
2.20 （0．0866）	38453－40904
2.25 （0．0886）	38453－40POS
2.30 （0．0906）	38453－40906
2.35 （0．0925）	38453－40P07
2.40 （0．0946）	30453－40P00
2.45 （0．0965）	38453－40P09
2.50 （0．0984）	38453－40P10
2.55 （0．1004）	38453－40Р11
2.60 （0．1024）	$38453-40 \mathrm{P} 12$

Total preload

Total preload	Value oi more than $0.29 \mathrm{~N} \cdot \mathrm{\pi}$（ 3.0 ikg－cm， $2 . \mathrm{B}_{\mathrm{B}}$ in－lb）added of to measured value of drive pinion pretoad
Fing gear backlastr mmo（in）	$0.13-0.10\{0.0051-0.0071\}$

FRONT AXLE \& FRONT SUSPENSION

SECTION

CONTENTS

PRECAUTIONS AND PREPARATION FA- 2
FRONT AXLE AND FRONT SUSPENSION FA 5
CHECK AND ADJUSTMENT - On-vehicle FA- 6
FRONT AXLE FA-11
FRONT AXLE - Wheel Hub and Steering Knuckle FA-12
FRONT SUSPENSION FA-16
FRONT SUSPENSION - Coil Spring and Shock Absorber FA-17
FRONT SUSPENSION - Third Link and Upper Link FA-19
FRONT SUSPENSION - Transverse Link and Lower Ball Joint FA-22
FRONT SUSPENSION - Tension Rod and Stabilizer Bar FA-23
SERVICE DATA AND SPECIFICATIONS (S.D.S.) FA-24

Precautions

- When installing each rubber part, final tightening must be carried out under uniaden condition* with tires on ground.
* Fuel, radiator coolant and engine oll full. Spare tire, jack, hand toois and mats in designated positions.
- When removing each suspension part, check wheel alignment and adjust II necessary.
- Use Tool when removing or installing brake lines.

Preparation

SPECIAL SERVICE TOOLS

Tool number Tool name	Description	
HT72750000 Baili joint remover		Femoving tie-rod outer end and lower ball joint
HT71780000 Spring compressor		Removing and installing coil spring
ST35652000 Shock absorber attachment		Fixing shock absorber
GG94310000 Flare nu: torque wrench		Rerroving and installing brake piping
ST30031000 Bearing inner race puller		Removing bearing inner race

PRECAUTIONS AND PREPARATION

Preparation (Cont'd)

Tool number Tool name	Descriptlon	
KV991040S0		Attaching wheel alignment gauge
C.C.K. nolder		
KV99104010		a: $72 \mathrm{~mm}(2.83 \mathrm{in}) \mathrm{dis}$.
Attachment set		b: $65 \mathrm{~mm}(2.56 \mathrm{ln})$ dia. c: 57 mm (2.24 ln) dia.
(1) Plate		d: 53.4 mm (2.102 in) tila.
(2) Gutde bolts		
(3) Nuts (4) Springs		
(5) Center piate		
(6) KV99104020		
Adapter A		
(7) KV99104030		
Adapter B		
(8) KV99104040		
Adapter C (5) KV99104050		
Adapter D		

PRECAUTIONS AND PREPARATION

Preparation (Cont'd)

COMMERCIAL SERVICE TOOLS

Tool name	Description
Wheel bearing dift	Removing wheel bearing A: $60 \mathrm{man}(2.35 \mathrm{kn}) \mathrm{dta}$. B: $37 \mathrm{~mm}(\mathbf{m} .45 \mathrm{in}$) dia.
Wheel bearing drits	instaling wheel bearing A: $75 \mathrm{~mm}(2.95 \mathrm{in})$ dia. B: 65 mm (2.56 in) dia.
Baffle plate crift	 Installing bafle plate A: $\mathbf{1 2 5 m m}$ (4.82 in) dia. B: $106 \mathrm{~mm}(4.17 \mathrm{in})$ dia.
Tension rod bushing drift	Pemoving and installing tension rod bushing A: 7 F min (3.07 in) dia. B: $86 \mathrm{~mm}(2.60 \mathrm{in}) \mathrm{dta}$. C: $62 \mathrm{mam}(2.44 \mathrm{in})$ dita. D: $25-55 \mathrm{~mm}(0.58 \cdot 2.17 \mathrm{in}) \mathrm{d}\{\mathrm{a}$.
Grease seal dritt	Instailing wheel hub grease seal A: 86 mm (3.39 in) dian. B: 76 mm (2.99 ln) dia.
Cap drift	Instaling king pity cap A: $60 \mathrm{~mm}(2.36 \mathrm{in})$ dia. B: $52 \mathrm{~mm}(2.05 \mathrm{in})$ dia.
Bearing dritt	Installing king pin lower bearing A. 57 mm (2.24 in) die. B: 50 mm ($\mathbf{5} .97 \mathrm{in}$) dia.
Bearing drift	Installing king pin upper bearing A: $57 \mathrm{~mm}(2.24 \mathrm{~mm}$ tia. B: $46 \mathrm{mmm}(1,81 \mathrm{~lm})$ dila. C: $40 \mathrm{~mm}(1.57 \mathrm{in})$ dila. D: 2.5 mm (0.098 in)
Grease seal drift	installing king pin grease seal A. 66 mm (2.68 int dia. B. $58 \mathrm{~mm}(2.28 \mathrm{in})$ dia.

Final tightening for rubber parts mugt be done under uniaden condition*, with tives on ground. - Fuel, radiator eoobunt und engime oil full. Spare tire, jack, hand toots and mats in deaignated positions.

FI: N.m(kg.m, ft-lb)

Front Axle and Front Suspension Parts

Check front axle and front suspension parts for looseness, cracks, wear or other damage.

- Shake each front wheel to check for excessive play.
- Retighten all nuts and bolts to the specified torque.

Tightening torque: Reter to FRONT SUSPENSION.

- Make sure that cotter pin is inserted.
- Check suspension ball joint end play.
(1) Jack up front of vehicle and set the stands.
(2) Clamp dial indicator onto transverse link and place indicator tip on lower edge of brake caliper.
(3) Make sure front wheels are straight and brake pedal is depressed.
(4) Place a pry bar between transverse link and inner rim of road wheed.
(5) While pushing and releasing pry bar, observe maximum dial indicator value.

Vertical end play: $0 \mathrm{~mm}(0 \mathrm{in})$
(6) If not to above specification, remove and recheck ball joint.

Front Axle and Front Suspension Parts (Cont'd)

- Check shock absorber for oil leakage or other damage.

Front Wheel Bearing

- Check wheel bearings for smooth operation.
- Check axial end play.

Axial end play: $0.05 \mathrm{~mm}(0.0020 \mathrm{in})$ or less

- If axial end play is not within specification or wheel bearing does not turn smoothly, replace wheel bearing assembly. Refer to FRONT AXLE - Wheel Hub and Knuckle.

Front Wheel Alignment

Before checking front wheel alignment, be sure to make a preliminary inspection.

PRELIMINARY INSPECTION

Make the following checks. Adjust, repair or replace if neces sary.

- Check tires for wear and improper inflation.
- Check front wheel bearings for looseness.
- Check wheel runout.

Wheel runout: Refer to S.D.S.

- Check front suspension for looseness.
- Check steering linkage for looseness.
- Check that front shock absorbers work properly.
- Check vehicle posture (Unlader).
("Unladen": Fuel, radiator coolant and engine oil full. Spare tire, jack, hand tools and mats in designated positions.)

CHECK AND ADJUSTMENT - On-vehicle

Front Wheel Alignment (Cont'd)

CAMBER, CASTER AND KINGPIN INCLINATION

Camber, caster and kingpin inclination are preset at factory and cannot be adjusted.

1. Set vehicle on turning radius gauge.

2. Mount Tool as follows.

Tool number: KV991040S0

KV99104010 (1) to (5) KV99104020 (6)
KV99104030 (7)
KV99104040 (8)
KV99104050 (9)
a. Select adapter which corresponds with wheel or hub shape from four types (6) to (9).
b. Screw selected adapter in until it contacts plate (3).
c. Remove wheel nuts.
d. Install guide bolts (2) to where wheel nuts were removed and tighten them by hand.
e. Install plate and adapter assembly to guide bolts (2).
f. install springs (4) onto guide bolts (2). Then tighten nuts (3) evenly until a litte before springs (4) are completely compressed.
g. Install center plate (5).
h. Mount wheel alignment gauge on attachment plate.

Front Wheel Alignment (Cont'd)

TOE-IN

1. Draw a base line on tread surface of tires.

- After lowering front of vehicle, move it up and down to eliminate friction, and set wheels in straight-ahead position.

2. Measure toe-in.

- Measure distance " A " and " B " at same height as hub center.

Total toe-in:
A-B: $\quad 0-2 \mathrm{~mm}(0-0.08 \mathrm{in})$
20: $\quad 0^{\prime}$ - 11'
3. Adjust toe-in by varying length of steering tie-rods.
(1) Loosen lock nuts.
(2) Adjust toe-in by turning tie-rod forward or backward.

Make sure both tie-rods are the same length.
Standard length " L ";
$155 \mathrm{~mm}(6.10 \mathrm{in})$
(3) Tighten lock nuts to the specified torque.
$\mathrm{Cl}: 78-98 \mathrm{~N} \cdot \mathrm{~m}$
$(8.0-10.0 \mathrm{~kg}-\mathrm{m}, 58=72 \mathrm{ft}-\mathrm{lb})$
$\begin{aligned} & \text { cy: } 78-98 \mathrm{~N} \cdot \mathrm{~m} \\ &(8.0-10.0 \mathrm{~kg}-\mathrm{m}, 56-72 \mathrm{tt}-\mathrm{bb})\end{aligned}$ right and left wheels with a suitable alignment gauge.

Camber: $-1^{\circ} 35^{\prime}$ to $-0^{\circ} 05^{\prime}$
Caster: $\mathbf{9}^{\circ} 00^{\prime}-10^{\circ} 30^{\prime}$
Kingpin inclination: $1 \mathbf{1}^{\circ} 10^{\prime}-13^{\circ} \mathbf{4 0} 0^{\prime}$
4. If camber, caster and kingpin inclination are not within specification, inspect and replace any damaged or worn front suspension parts.

Front Wheel Alignment (Cont'd)

FRONT WHEEL TURNING ANGLE

1. Set wheels in straight-ahead position and then move vehicle forward until front wheels rest on furning radius gauge properly.
2. Rotate steering wheel fully to the right or left with a force of 98 to 147 N (10 to $15 \mathrm{~kg}, 22$ to 33 lb) while engine is running at idle and measure turning angle.
Do not hold the steering wheel at full lock for more than $\mathbf{1 5}$ seconds.

Wheal turning angle (Full turn): Inside wheel (A): $\quad 32^{\circ}-36^{\circ}$ Outside wheel (B): $\quad 27^{\circ}-31^{\circ}$

Removal

CAUTION:

Wheel bearing usually does not require maintenance. If any of the following symptoms are noted, replace wheel bearing assembly.

- Growling noise is emitted from wheel bearing during operation.
- Wheel bearing drags or turns roughly when hub is turned by hand.
- Remove brake caliper assembly and rotor.

Brake hose need not be disconnected from brake caliper. Be carelul not to depress brake pedal, or piston will pop out. Do not pull or twist brake hose.

Installation

- Install steering knuckle assembly.
- Apply anti-rust wax as follows:
- Portions around lower ball joint connections
- Portions around tie-rod ball joint connections
- Portions around kingpin lower nut location
- Portions around A.B.S. sensor connection

Disassembly
 CAUTION:
 When removing wheel bearing from steering knuckle, replace wheel bearing assembly (outer race, inner races and grease seal) with a new one.

- Remove hub cap and wheel bearing lock nut.
- Remove wheel hab with a suitable tool.
- Remove circular clip with a suitable tool.
- Press out wheel bearing assembly from steering knuckle.

Disassembly (Cont'd)

- Drive out wheel bearing inner race (to outside) from wheel hub, then remove grease seal.

Inspection

WHEEL HUB AND STEERING KNUCKLE

Check wheel hub and steering knuckle for any cracks.

CIRCULAR CLIP

Check circular clip for wear or cracks.
Replace if necessary.

Assembly

1. Press new wheel bearing assembly into steering knuckle from outside of steering knuckle.

Maximum load P :

$34.3 \mathrm{kN}(3.5 \mathrm{t}, \mathbf{3 . 9}$ US ton, 3.44 Imp ton)

CAUTION:

- Do not press inner race of wheel bearing assembly.
- Do not apply oll or grease to maling surfaces of wheel bearing outer race and wheel hub.

2. Install circular clip into groove of steering knuckle.
3. Apply multi-purpose grease to sealing lip.
4. Install grease seal.

Maximum load P:
$10 \mathrm{kN}(1 \mathrm{t}, 1.1 \mathrm{US}$ ton, 1.0 mp ton)
5. Install splash gtrard.

Assembly (Cont'd)

6. Press wheel hub into steering knuckle.

Maximum load P :
$29 \mathrm{kN}(3 \mathrm{t}, 3.3 \mathrm{US}$ ton, 3.0 Imp ton)
7. Tighten wheel bearing lock nut to the specified torque.
(9) 206-284 N•m (21-29 kg-m, $152-210 \mathrm{ft}-\mathrm{lb})$
8. Stake wheel bearing lock nut.
9. Install hub cap.

Drive hub cap onto steering knuckle by lightly tapping with a plastic hammer. After hub cap is in close contact with steering knuckle, tighten bolts.
10. Check wheel bearing preload and axial end play.

Before checking, spin wheel hub at least 10 revolutions in both directions.

Turning torque:
0.34 - $2.16 \mathrm{~N} \cdot \mathrm{~m}$ ($\mathbf{3 . 5} \mathbf{- 2 2 . 0} \mathrm{kg}-\mathrm{cm}, 3.0$ - $19.1 \mathrm{in}-\mathrm{lb})$ (NSK bearing)
$0.44-3.33 \mathrm{~N} \cdot \mathrm{~m}(4.5-34.0 \mathrm{~kg}-\mathrm{cm}, 3.9-29.5 \mathrm{in} \cdot \mathrm{lb})$ (NTN bearing)
As measured at wheel hub bolt:
$5.9-37.3 \mathrm{~N}(0.6-3.8 \mathrm{~kg}, 1.3-8.4 \mathrm{lb})$
(NSK bearing)
$7.8-57.9 \mathrm{~N}(0.8-5.9 \mathrm{~kg}, 1.8-13.0 \mathrm{lb})$
(NTN bearing)
Axial end play:
$0.05 \mathrm{~mm}(0.0020 \mathrm{in})$ or less

Finat tightuning for rubber perts must be done under
undmion condition ${ }^{4}$, with tires on ground.

- Fusf, redistor coolamt end engine oil fult.

Spare tire, jeck, hand tools and mats in durignated positions.

(T) : N.th (kg-m, ft-lb)

Removal

- Remove shock absorber fixing bolt and nut (to hoodledge). Do not remove piston rod lock nut.

Disassembly

1. Set shock absorber on vise with Tool, then loosen piston rod lock nut.
Do not remove piston rod lock nut.
2. Compress spring with Tool so that shock absorber mounting insulator can be turned by hand.
3. Remove piston rod lock nut.

Inspection

SHOCK ABSORBER ASSEMBLY

- Check for smooth operation through a full stroke, both compression and extension.
- Check for oil leakage occurring on welded or gland packing portions.
- Check piston rod for cracks, deformation or other damage. Replace if necessary.

Inspection (Cont'd)

MOUNTING INSULATOR AND RUBBER PARTS

Check cemented rubber-tometal portion for separation or cracks. Check rubber parts for deterioration.
Replace if necessary.

COIL SPRING

Check for cracks, deformation or other damage. Replace if necessary.

Assembly

- When installing coil spring, be careful not to reverse top and bottom direction. (Top end is fat.)

- When installing coil spring on shock absorber, it must be positioned as shown in figure at left.

Removal

CAUTION:
Kingpin bearing usually does not require maintenance. If any of the following symptoms are noted, replace kingpin bearing assembly.

- Growling noise is emitted from kingpin bearing during operation.
- Kingpin bearing drags or turns roughly when steering knuckle is furned by hand.

1. Remove cap and kingpin upper nut.

Do not remove kingpin lower nut.
2. Remove shock absorber fixing nut and upper link fixing bolts.
3. Remove third link and upper link.

Installation

THIRD LINK

- Pack kingpin housing and cap with multi-purpose grease. Grease capactiy:

Kingpin housing $10 \mathrm{~g}(0.35 \mathrm{oz})$
Cap $\quad 5 \mathrm{~g}(0.18 \mathrm{oz})$

- Install thire link and cap.

Installation (Cont'd)
 UPPER LINK

- Upper link has characters " A " and " L " (or " R ") on it as shown. Always install upper link with "A" side facing axle and side without a character facing vehicle body.
Upper link bushings cannot be disassembled.

Disassembly

- Remove upper bearing (inner race and ball).
- Remove kingpin grease seal.
- Remove lower bearing (inner race and ball).

- Remove upper and lower outer race.

Be caretul not to damage kingpin housing.

Assembly

- Install lower bearing.

Assembly (Cont'd)

- Install lower oil seal.
- Apply multi-purpose grease to oil seal lip.

Removal and Installation

- Remove tension rod, ball joint and transverse link assembly.
- During installation, final tightening must be done at curb weight with tires on ground.
- After installation, check wheel alignment.

Refer to "Front Wheel Alignment" in CHECK AND ADJUSTMENT - On-vehicle.

Inspection

TRANSVERSE LINK

- Check transverse link for damage, cracks or deformation. Replace it if necessary.
- Check rubber bushing for damage, cracks and deformation. Replace transverse link if necessary.

LOWER BALL JOINT

Check ball joint for play. If ball stud is worn, play in axial direction is excessive or joint is hard to swing, replace transverse link assembly.

Swing force and turning torque

Before checking, turn ball joint at least 10 revolutions so that ball joint is properly broken in.

```
Swing torce "A":
(measuring point: cotter pin hole of ball stud)
    7.8-53.0 N (0.8-5.4 kg, 1.8-11.9 1b)
Turning torque "B";
    0.49-3.43 N-m (5.0-35 kg-cm, 4.3-30.4 in-Ib)
    Vertical end play "C":
    0 mm (0 in)
```


Removal and Installation

- Remove tension rod and stabilizer bar.
- When removing tension rod bushing. place one drift on lower side of bushing and the other on upper side, and press bushing out.
- Place arrow mark on bushing facing tension rod before installing bushing.
- When installing stabilizer, make sure that paint mark and clamp face in the correct direction.

General Specifications

COIL SPRING

Applied modef	Australia	Europe
	Va300E	VG30DETT
Wire diameter $\quad \mathrm{mm}\{\mathrm{in}\}$	12.0 (0.472)	
Coil diameter $\quad \mathrm{mm}\{\mathrm{in}\}$	100 (3.94)	
Free length mmentin)	370 (14.57)	390 (15.35)
Spring constant $\mathrm{N} / \mathrm{mm}(\mathrm{kg} / \mathrm{mm}, \mathrm{m}, \mathrm{l} / \mathrm{fa})$	27.5 (2.8. 157)	25.5 (2.6, 146)
identuication color	Blue $\times 2$	L.H.: Orange $\times 1$. Putple $\times 1$ R.H.: White $\times 1$, Pufple $\times 1$

SHOCK ABSORBER

Applied model	Australia	Europe
	VE30DE	VG30DET
Damping torce [at $0.3=(1.0 \mathrm{Ht}) / \mathrm{sec}] \quad .\mathrm{N}(\mathrm{kg}, \mathrm{b})$		
Expansion	$\begin{aligned} & 1,177-1,569 \\ & (120-160 \\ & 265-353) \end{aligned}$	$\begin{aligned} & \{177 \times 1.530 \\ & \{120-156 \\ & 265-344\} \end{aligned}$
Compression	$\begin{gathered} 559-814 \\ (67-83 . \\ 128-183) \end{gathered}$	$\begin{gathered} 539-755 \\ (55-77 . \\ 121+179) \end{gathered}$
Piston rod diameter man (in)	12.5 (0.492)	

FRONT STABHLIZER BAR

Applied mosdel	Australia	Europe
	VG30DE	VG30D든
Stabilizer diameter mman (in)	$\begin{gathered} 28.6 \\ (1.126) \end{gathered}$	$\begin{gathered} 27.2 \\ (1.071) \end{gathered}$
Identification color	Purpie	Whate

TENSION ROD

	Applied model	All
Roc olameter	mrn (in)	$20.0(0.787)$

Inspection and Adjustment

WHEEL ALIGNMENT (Unladen*1)

Camber degree	
Caster degree	$9^{*} 00^{\prime}-10^{\circ} 30^{\prime}$
Toe-tn (Total)	
m(fi (in) cegree	$\begin{gathered} 0-2(0-0.08) \\ 0^{\prime}-11^{x} \end{gathered}$
Kingpit inctination degree	$12^{\circ} 10^{x}-13^{\circ} 40^{\prime}$
Front wheel tuming angle	
Foll turn*2 degree Inside	$32^{*}-36^{*}$
Outside	$27^{\circ}-31^{\circ}$

"1: Fale radiator coolant and engine of full. Spate tire, jack, hand tools and mals in designated positions.
'2: On power steering models, wheel turning force \{at circumference of steeanng wheel) of 98 to $147 \mathrm{~N}(10$ to $15 \mathrm{~kg}, 22$ to 33 lb) witt engina ldfe.

WHEEL BEARING

Wheel bearing axial end play mm (in)	$0.05(0.0020)$ or less
Wheel bearing lock nut Tightering torque $\mathrm{A} \cdot \mathrm{m}(\mathrm{kg}-\mathrm{Ct}, \mathrm{ft}-\mathrm{fb})$	206-284 (21-29, $152-210$)
Wheel bearing tuffing resistance $\mathrm{N} \cdot \mathrm{m}(\mathrm{kg}-\mathrm{cm}, \mathrm{ia}-\mathrm{H})$ NSK bearing	$\begin{gathered} 0.34-2.76 \\ (3.5-22.0,3.0-19.1) \end{gathered}$
NTN bearing	$\begin{gathered} 0.44-3.33 \\ (4.5-34.0 .3 .9-29.5) \end{gathered}$
At whee hub bolt $\mathbf{N}\left(\mathbf{k} \mathbf{g}_{1} \mathrm{f}\right),$ NSK beartng	$\begin{gathered} 5.9-37.3 \\ (0.6-3.8,1.3-8.4) \end{gathered}$
NTN bearisg	$\begin{gathered} 7.8-57.9 \\ (0.8-5.9,1.8-13.5) \end{gathered}$

LOWER BALL JOINT

Swing force (Mensuring point: cotter pir hote of ball stud) $\mathrm{N}(\mathrm{~kg}, 1 \mathrm{~b})$	$\begin{gathered} 7.8-53.0 \\ (0.8-5.4,1.8-11.9) \end{gathered}$
Turning torque $\mathrm{N} \cdot \mathrm{m}\left(\mathrm{kg}-\mathrm{cm}_{1} \mathrm{in}+\mathrm{lb}\right)$	$\begin{gathered} 0.49-3.43 \\ (5.0-35.4 .3+30.4) \end{gathered}$
Vertical end play \quad mm (in)	0 (0)

WHEEL RUNOUT (Radial and lateral)
Unit: mis (in)

Wheel type	Aluminism whed
Radial tunout limit	0.3 (0.012)
Lateral runout Immt	

BRAKE SYSTEM

SECTION

CONTENTS

PRECAUTIONS AND PREPARATION BR- 2
CHECK AND ADJUSTMENT BR- 3
BRAKE HYDRAULIC LINE BR- 4
BRAKE PEDAL AND BRACKET BR- 6
BRAKE BOOSTER BR- 8
VACUUM PIPING BR- 9
MASTER CYLINDER BR-11
FRONT DISG BRAKE (OPZ25V and OPF25V) -- Caliper BR-12
FRONT DISC BRAKE (OPZ25V and OPF25V) - Rotor BR-15
REAR DISC BRAKE - Caliper BR-16
REAR DISC BRAKE - Rotor BR-20
PARKING BRAKE CONTROL BR-21
PARKING DRUM BRAKE BR-23
ANTHLOCK BRAKING SYSTEM BR-25
TROUBLE DIAGNOSES BR-30
SERVICE DATA AND SPECIFICATIONS (S.D.S.) BR-55

Precautions

- Recommended fluid is brake fluid "DOT 3".
- Never reuse drained brake fluid.
- Be careful not to splash brake fluid on painted areas.
- To clean or wash all parts of master cylinder, disc brake caliper and wheel cylinder, use clean brake fluid.
- Never use mineral oils such as gasoline or kerosene. They will ruin rubber parts of hydraulic system.

- Use Tool when removing and installing brake tube.

WARNING:

- Clean brake pads and shoes with a waste cioth, then collect dust with a dust collector.

Preparation

SPECIAL SERVICE TOOLS

Tool number Tool name	Description		
Flare nut torque wferch		\quad	Removing and installing each brake
:---			
piping			

CHECK AND ADJUSTMENT

Checking Brake Fluid Level

- Check fluid level in reservoir tank. It should be between Max. and Min. lines on reservoir tank.
- If fluid level is extremely low, check brake system for leaks.

Checking Brake System

- Check brake lines (lines and flexible hoses) for cracks, deterioration or other damage. Replace any damaged parts.
If leakage occurs around joints, retighten or, if necessary, replace damaged parts.
- Check for oll leakage by fully depressing brake pedal.

Changing Brake Fluid

1. Drain brake fluid in each air bleeder valve.
2. Refill until new brake tiluid comes out of each air bleeder valve.
Use same procedure as in bleeding hydraulic system to refill brake fluid.
Refer to Bleeding Procedure.

- Fefili with recommended brake fiuld "DOT 3".
- Never reuse drained brake fluid.
- Be careful not to splash brake fluid on painted areas.

Models with A.B.S.

Models without A.B.S.

SBR072B

Bleeding Procedure
 CAUTION:

- Carefully monitor brake fluid level at master cylinder during bleeding operation.
- Fill reservoir with recommended brake fluid. Make sure it is full at all times while bleeding air out of system.
- Place a container beneath master cylinder to avold spillage of brake fluid.
- Bleed air according to the following procedure.

Left rear caliper
Right rear caliper
Left front caliper
Right front caliper
Front side air bleeder on A.B.S. actuator (Models with A.B.S.)
\downarrow
Rear side air bleeder on A.B.S. actuator (Models with A.B.S.)

- To bleed air out of lines, wheel cylinders and calipers, use the following procedure.

1) Connect a transparent vinyl tube to air bleeder valve.
2) Fully depress brake pedal several times.
3) With brake pedal depressed, open air bleeder valve to release air.
4) Close air bleeder valve.
5) Release brake pedal slowly.
6) Repeat steps 2) through 5) until clear brake fluid comes out of air bleeder valve.

Removal and Installation

1. To remove brake flexible hose, first remove flare nut securing brake line to hose, then withdraw lock spring.
2. Cover openings to prevent entrance of dirt whenever disconnecting hydraulic line.
3. All hoses must be free from excessive bending, twisting and pulling.
4. After installing brake lines, check for oil leakage by fully depressing brake pedal.

Inspection

Check brake lines (lines and flexible hoses) for cracks, deterioration or other damage. Replace any damaged parts.
If leakage occurs around joints, retighten or, if necessary, replace damaged parts.

Removal and Installation

Inspection

Check brake pedal for following items.

- Brake pedal bend
- Clevis pin deformation
- Crack of any welded portion

Adjustment

Check brake pedal free height from dash reinforcement panel. Adjust if necessary.

H: Free height Refer to S.D.S.
D: Depressed helght Refer to S.D.S. Under force of $490 \mathrm{~N}(50 \mathrm{~kg}, 110 \mathrm{lb})$ with englne running
C_{4} : Clearance between pedal stopper and threaded end of slop lamp switch
$0.3-1.0 \mathrm{~mm}(0.012 \cdot 0.039 \mathrm{nn})$
C_{2} : Clearance between pedal stopper and threaded end of A.S.C.D. switch

$$
0.3-1.0 \mathrm{~mm}(0.012-0.039 \mathrm{in})
$$

A: Pedal free play 1-3 mm (0.04 ~ 0.12 in)

1. Adjust pedal free height with brake booster input rod. Then tighten lock nut.
Make sure that tip of input rod stays inside.
2. Adjust clearance " C_{1} " and " C_{2} " with stop lamp switch and A.S.C.D. switch respectively. Then tighten lock nuts.
3. Check pedal free play.

Make sure that stop lamp is of when pedal is released.
4. Check brake pedal's depressed height while engine is running.
If depressed height is below specified value, check brake system for leaks, accumulation of air or any damage to components (master cylinder, wheel cylinder, etc.); then make necessary repairs.

BRAKE BOOSTER

Removal and Installation

Inspection

OPERATING CHECK

- Depress brake pedal several times with engine off, and check that there is no change in pedal stroke.
- Depress brake pedal, then start engine. If pedal goes down slightly, operation is normal.

ARRTIGHT CHECK

- Start engine, and stop it after one or two minutes. Depress brake pedal several times slowly. If pedal goes turther down the first time and gradually fises after second or third time, booster is airtight.
- Depress brake pedal while engine is running, and stop engine with pedal depressed. If there is no change in pedal stroke after holding pedal down 30 eeconds, brake booster is airtight.

OUTPUT ROD LENGTH CHECK

1. Supply brake booster with vacuum of -66.7 kPa (-667 mbar, $-500 \mathrm{mmHg},-19.69 \mathrm{inHg}$) using a handy vacuum pump.
2. Check output rod length.

Specified fength:

$10.275 \cdot 10.525 \mathrm{~mm}(0.4045 \cdot 0.4144 \mathrm{in})$

Removal and Installation

- Insert vacuum tube into vacuum hose more than 24 mm (0.94 in).

CAUTION:
Do not apply winy oil or lubricents to vorutim howe and chock rutve.

- Install check valve, paying attention to its direction.

Inspection

HOSES AND CONNECTORS

- Check vacuum lines, connections and check valve for airtightness, improper attachment chafing and deterioration.

VACUUM PIPING

Inspection (Cont'd)

CHECK VALVE

Check vaculum with a vacuum pump.

Connect to booster side	Vactumt should exisk.
Connect to engine side	Vacuum should not exist.

Removal and Installation

- Replace stopper cap if claw is damaged or detormed. - Bend claws inward when installing stopper cap.
- Pay attention to direction of piston cups in figure at left.
- Check parts for wear or damage. Replace if necessary.

Pad Replacement

CAUTION:

- When pads are removed, do not depress brake pedal because piston will pop out.
- Be careful not to damage dust seal or get oil on rotor. Always replace shims when replacing pads.

1. Remove clip from pad pin and then remove pad pin.
2. Remove cross spring.
3. Pull out outer pad and insert it temporarily between lower piston and rotor as shown.
4. Push back upper piston with a suitable tool and insert new pad so it contacts upper piston as shown.
5. Pull out old pad.
6. Push back lower piston with a sultable tool.
7. Pull out new pad and reinstall it in the proper position.
8. Repeat step 3 to 7 for inner pad.
9. Install cross spring, pad pin and clip.

Removal and Installation

1. Disconnect brake tube.
2. Remove brake pad.
3. Remove brake caliper mounting bolts.

Disassembly

1. Remove retaining ring.
2. Push out piston with dust seal using compressed air.
3. Remove piston seal.

CAUTION:

Be careful not to loosen or remove bolts joining both sides of caliper.
If there Is any fiuld leakage, replace callper assembly.

Inspection

CALIPER

- Check dust seals for damage.
- Check calipers for damage, rust or foreign materials.
- Check inside surface of cylinder for scoring, rust, wear, damage or foreign materiais. Replace if any such condition exists.
- Eliminate minor damage from rust or foreign materials by polishing surface with fine emery paper.

CAUTION:

Use brake fluid to clean.

PISTON

Check piston for scoring, rust, wear, damage or foreign materials. Replace if any condition exists.
CAUTION:
Piston sliding surface is plated. Do not polish with emery paper even if rust or foreign materials are stuck to sliding surface.

PAD PIN AND CLIPS

Check for wear, cracks deformation, deterioration, rust or other damage. Replace if any such condition exists.

Assembly

1. Insert piston seal into groove on cylinder body.
2. With dust seal fitted to piston, install piston into cylinder body.
3. Secure dust seal properly.
4. Install retaining ring.

Inspection (On-vehicle)

DISC PAD

- Check pad shims for deformation or damage.
- Check disc pad for wear or damage.

Pad standard thickness (A):
10.0 mm (0.394 in)

Pad wear Ilmit (A):
$2.0 \mathrm{~mm}(0.079 \mathrm{in})$

Inspection

RUBBING SURFACE

Check rotor for roughness, cracks or chips.

RUNOUT

Check runout using a dial indicator. Make sure that axial end play is within the specifications before measuring. Refer to section FA.

Rotor repair Iimit:
Maximum runout
(Total indicator reading at center of rotor pad contact surface)
$0.07 \mathrm{~mm}(0.0028 \mathrm{in})$

THICKNESS

Standard thickness:
OPZ25V
$26.0 \mathrm{~mm}(1.024 \mathrm{in})$ OPF25V
30.0 mm (1.181 in)

Minimum thickness:
OPZ25V
$24.0 \mathrm{~mm}(0.945 \mathrm{in})$
OPF25V
$28.0 \mathrm{~mm}(1.102 \mathrm{in})$

3. Pull out inner and outer pads.

CAUTION:
Be careful not to damage dust seal or get oll on rotor. Always replace shims when replacing pads.

Pad Replacement

CAUTION:
When pads are removed, to not depress brake pedal because platon will pop out.

1. Remove clip from pad pin and then remove pad pin.
2. Remove cross spring.

Removal and Installation

1. Disconnect brake tube.
2. Remove brake pad.
3. Remove brake cable and bracket.
4. Remove axle housing fixing bolts.

Disassembly

1. Remove retaining ring.
2. Push out piston with dust seal using compressed air.

Disassembly (Cont'd)

3. Remove piston seal.

CAUTION:

Be careful not to loosen or remove bolts jolning both sides of califer.
If there is any fluid leakage, replace caliper assembly.

Inspection

CALIPER

- Check dust seals for damage.
- Check calipers for damage, rust or foreign materials.
- Check inside surface of cylinder for score, rust, wear or other damage.
- Minor damage from rust of foreign materials may be eliminated by polishing surface with a fine emery paper. Replace if necessary.

CAUTION:

Use brake fluid to clean.

PISTON

Check piston for score, rust, wear or other damage. Replace if necessary.

CAUTION:

Piston sliding surface is plated. Do not polish with emery paper even if rust or foreign matter is sluck to sliding surface.

PAD PIN AND CLIP

Check for wear, cracks deformation, deterioration, rust or other damage. Replace it necessary.

Assembly

1. Insert piston seal into groove on cylinder body.
2. With dust seal fitted to piston, install piston into cylinder body.
3. Secure dust seal properly.
4. Install retaining ring.

Inspection (On-vehicle)

DISC PAD

- Check pad shims for deformation or damage.
- Check disc pad for wear or damage.

Standard thickness (A):
11.5 mm (0.453 in)

Pad wear limit (A):
2.0 mm (0.079 in)

Inspection

RUBBING SURFACE

Check rotor for roughness, cracks or chips.

RUNOUT

- Check runout using a dial indicator.
- Make sure that axial end play is within the specifications before measuring. Refer to section RA.

Rotor repair Immit:
Maximum runout
(Total Indicator reading at center of rotor pad contact surface)
0.07 mm (0.0028 in)

THICKNESS

Standard thickness:
18.0 mm (0.709 in)

Minimum thickness:
$16.0 \mathrm{~mm}(0.630 \mathrm{in})$

Removal and Installation

- Betore removing parking brake control, remove console box.
- Loosen cable using control lever adjuster, and separate front and rear cables.
Apply mult-purpose grease to areas between control lever drum and cables.
Be careful not to damage boot and inner cable.

Inspection

1. Check control lever for wear or other damage. Replace if necessary.
2. Check parking brake cables, lamp and switch. Replace if necessary.
3. Check parts at each connecting portion for deformation or damage. If found, replace.

Adjustment

Perform shoe clearance adjustment before adjusting control lever stroke.

1. Turn adjusting nut.

Adjustment (Cont'd)

3. Bend parking brake warning lamp switch plate so that brake warning light comes on when ratchet at parking brake lever is pulled " A " notches and goes out when fully released.

Number of notches " A "; 1

Shoe Replacement

1. Remove disc rotor (With parking drum brake).

Tighten two bolts gradually if disc rotor is hard to remove.

2. Atter removing anti-rattle pin, remove spring by rotating shoes.
Be careful not to damage parking brake cable when separating it.

Shoe Replacement (Cont'd)

3. Apply brake grease to the contact areas shown at left.

Shoe Clearance Adjustment

1. Remove adjuster hole plug, and turn adjuster wheel with a screwdriver until shoe touches brake drum.
Make sure that parking control lever is released completely.
2. Return adjuster wheel 5 to 6 latches.
3. Install adjuster hole plug; and make sure that there is no drag between shoes and brake drum when rotating disc rotor.

Breaking In Drum and Lining

1. Using either low or 2nd transmission speed, drive the unloaded vehicle on a safe, level and dry road.
2. Depress the release button of parking brake lever, then pull the lever with a force of $98 \mathrm{~N}(10 \mathrm{~kg}, 22 \mathrm{lb})$.
3. While holding the lever, continue to drive the vehicle forward 100 m (328 ft) at approximately $35 \mathrm{~km} / \mathrm{h}(22 \mathrm{MPH})$.
4. While holding the lever, drive the vehicle in reverse 10 m (33 ft) at approximately $10 \mathrm{~km} / \mathrm{h}$ (6 MPH).
5. Repeat steps 1 through three times and then repeat only step 4 one more time.

Drum Inspection

Standard inner dlameter:
$172.0 \mathrm{~mm}(6.77 \mathrm{in})$
Maximum inner diameter:
$173.0 \mathrm{~mm}(6.81 \mathrm{in})$

ANTI-LOCK BRAKING SYSTEM

System Components

Hydraulic Circuit

ANTI-LOCK BRAKING SYSTEM

Wiring Diagram

R.H.D.

Wiring Diagram (Cont'd)

Removal and Installation
caution:
Be careful not to damage sensor edge and sensor rotor teeth.
FRONT WHEEL SENSOR

REAR SENSOR

- Remove rear sensor rotor with differential side flange after drive shaft removal.
Refer to RA section.

- Disconnect 3 connectors and brake tubes.
- Remove 3 nuts fixing actuator to bracket.
Contents
How to Perform Trouble Diagnoses for Qulck and Accurate Repair BR-31
Symptom Chart BR-34
Preliminary Check 1 BR-35
Preliminary Check 2 BR-36
Preliminary Check 3,4 BR-37
Self-diagnosls BR-38
Component Parts Location BR-39
Harness Connector Location BR-40
Ground Circuit Check BR-41
Circult Diagram tor Ouick Pinpoint Check BR-42
Diagnostic Procedure 1 BR-43
Diagnostic Procedure 2 BR-45
Diagnostic Procedure 3 BR-45
Diagnostic Procedure 4 BR-46
Diagnostic Procedure 5 BR-46
Dlagnostic Procedure 5 BR-47
Diagnostic Procedure 7 BR-48
Dlagnostic Procedure 8 BR-49
Diagnostic Procedure 9 BR-50
Diagnostic Procedure 10 BR-51
Dlagnostic Procedure 11 BR-52
Electrical Components Inspection BR-53

How to Perform Trouble Dlagnoses for Quick and Accurate Repalr
 INTRODUCTION

The A.B.S. system has an electronic control unit to control major functions. The control unit accepts input signals from sensors and instantly drives actuators. It is essential that both kinds of signals are proper and stable. At the same time, it is important that there are no conventional problems such as air leaks in the booster or lines, lack of brake fluid, or other problems with brake system.
It is much more difficult to diagnose a problem that occurs intermittently rather than continuously. Most intermittent problems are caused by poor electric connections or faulty wiring. in this case, careful checking of suspicious circuits may help prevent the replacement of good parts.
A visual check only may not find the cause of the problems, so a road test should be performed.
Before undertaking actual checks, take just a few minutes to talk with a customer who approaches with a A.B.S. complaint. The customer is a very good source of information on such problems; especially intermittent ones. Through the talks with the customer, find out what symptoms are present and under what conditions they occur.
Start your diagnosis by looking for "conventional" problems first. This is one of the best ways to troubleshoot brake problems on an A.B.S. controlled vehicle.

How to Perform Trouble Diagnoses for Quick and Accurate Repair (Cont'd)

 WORK FLOW

TROUBLE DIAGNOSES

How to Perform Trouble Dlagnoses for Quick and Accurate Repair (Cont'd)

DIAGNOSTIC WORKSHEET

There are many kinds of operating conditions that lead to customer complaints, even if the system is normal.
A good grasp of such conditions can make trouble-shooting faster and more accurate.
In general, feelings for a problem depend on each customer's information. It is therefore important to fully understand the symptoms or under what conditons a customer complains.
Make good use of a diagnostic worksheet such as the one shown below in order to utilize all the complaints for troubleshooting.

Worksheet sample

Customer name MP/MS		Model \& Year			Vin		
Engine \#		Trans.			Mileage		
Incident Date		Manut. Date			In Service Date		
Symptoms	Pedal vibration and noise	Wafning ac* tivates	Long stop- ping distance	Abnormal pedal action	A.B.S. doesrit work	A.B.S. works but warning activates	A.E.S. works frequently
Engine conditions		When starting \square After starting \square Engine speed: 5,000 ypm or more					
Foad conditions		Low friction road (D Snow [] Gravel Other)\square Protusion					
Driving conditions		High speed comeringVehicle speed: Greater than $10 \mathrm{~km} / \mathrm{h}$ (6 MPH)Vehicie speec: $10 \mathrm{~km} / \mathrm{h}(6 \mathrm{MPH})$ or lessVehlicle is stopped					
Applying brake condltions		SuddenlyGradually					
Other conditions		Operation of electrical equipmentLarge pedal strokeOperation of clutch					

Symptom Chart

	BP-53	Actuator [napection					\bigcirc	
	BP-41	Motor ground					0	
	BR-41	Control unit ground					0	
	日R.52	Diagnostic Procedure ${ }^{\text {\# }}$	\bigcirc	0	0	0	\bigcirc	0
	BR-5 ${ }^{\text {¢ }}$	Diagnostic Procedure to	0	\bigcirc	\bigcirc	\bigcirc	-	0
	8R-50	Ofagnostic Procedure 9	0	\bigcirc	\bigcirc	\bigcirc	0	\%
	BR-49	Diagnostic Procedure 8	0	O	\bigcirc	\bigcirc	0	0
	BR-48	Diagnostic Procedare 7	0	O	0	\bigcirc	\bigcirc	O
	Br-47	Diagnostic Procedure 6	0	0	\bigcirc	\bigcirc	0	0
	BR-46	Diagnostic Procedure 5						O
	89-46	Diagnostic Procedure 4					O	
	88-45	Dlagnostic Procedure 3				0		
	BR 45	Diagnostic Procedure 2			\bigcirc			
	8P-43	Dlagnostic Procedere 1	0					
	BR-37	Preliminary Cheek 4	0	\bigcirc	\bigcirc	\bigcirc	0	0
	BR-37	Preliminary Check 3	\bigcirc	\bigcirc				
	BR-36	Preliminary Check 2		\bigcirc			\bigcirc	
	ger 35	Preliminary Check 1			¢	0		

Preliminary Check 1

Check brake system.
Peter to CHECK AND ADJUSTMENT.

Check brake booster operation and airtightness.
Refer to "Inspection" of BRAKE BOOSTER.

SBR744A
$\xrightarrow{\text { N.G. }}$ Replace malfunctioning parts.

Check brake pads and rozor.
Refer to "Inspection" of FRONT and REAR
DISC BRAKE.

Preliminary Check 2

Check sensor clearance.

Check sensor rotor for teeth damage.

Measure each semsor resistance.
$0.8 \cdot 1.2 \mathrm{k} \Omega$

When ignition switch is turned on, warring lamp turns on.

Check watning lamp for deactivation.
When engine starts, warning lamp deactivates.

If Preliminary Check 2 is not performed and there is abnormal A.B.S. operation. perform Preliminary Check 2.

Ensure warning lamp remains off while oriving.

Self-diagnosis

CHECKING THE NUMBER OF L.E.D. FLASHES

When a problem occurs in the A.B.S., the warning light on the instrument panel comes on. As shown in the Table, the control unit performs self-diagnosis.
To obtain satisfactory self-diagnosing results, the vehicle must be driven above $30 \mathrm{~km} / \mathrm{h}$ (19 MPH) for at least one minute before the self-diagnosis is pertormed. After the vehicle is stopped, the number of L.E.D. flashes is counted while the engine is running.
The L.E.D. is located on the control unit, identifying a malfunctioning part or unit by the number of flashes. Both the warning light and the L.E.D. persistently activate, even after a malfunctioning part or unit has been repaired, untess the ignition switch is turned "OFF". After repairs, turn the ignition switch "OFF". Then start the engine and drive the vehicle over $30 \mathrm{~km} / \mathrm{h}(19 \mathrm{MPH})$ for at least one minute to ensure that the malfunctioning part or unit has been repaired properly.
If more than two circuits malfunction at the same time, the L.E.D. will flash to indicate one of the malfunctioning circuits. After the circuit has been repaired, the L.E.D. will then tlash to indicate that the other circuit is malfunctioning.

No. of L.E.D. flashes	Malfunctioning part or unit	Dagnostic Procedare
1	Leftront actuator solenoid circzit	Diagnostic Procedure 6
2	fight front actuator solenoid circult	
3 or 4	Rear actuator solenold circuit	
5	Lett tront wheel sensor circuit	Qiagnostic Procedure ?
6	Fight tront wheel sensor cifcuit	
7 or 8	Prear wheel sensor circuit	
g	Motor and motor relay	Biagnostic Procedure 8
10	Solenoid valve relay	Diagrostic Procedure 9
\$6 or continuous	Control unit	Diagnostic Procedture 10
Warning activates and L.E.D. "OFF"	Power supply or ground circuit for mentrol unit	Diagnostic Procedjre 11

Example

improper operation of ifft front zotor sersor circuit

Component Parts Location

Harness Connector Location

Ground Circuit Check

ACTUATOR MOTOR GROUND

- Check resistance between both terminats. Resistance: approx. on

CONTROL UNIT GROUND

- Check resistance between both terminals. Hesistance: 0Ω

Circuit Dlagram for Quick Pinpoint Check

Diagnostic Procedure 2

SYMPTOM: Long stopping distance
Refer to worksheet results.

Diagnostic Procedure 4

SYMPTOM: A.B.S. doesn't work.
Refer to worksheet results.

Diagnostic Procedure 5

SYMPTOM: A.B.S. works but warning activates.

Diagnostic Procedure 6
 ACTUATOR SOLENOID (L.E.D. flashing number 1-4)

Diagnostic Procedure 7

WHEEL SPEED SENSOR (L.E.D. flashing number 5-8)

INSPECTIONSTART

Remove battery negative termimal connector.

R' : R.H.D. model SBREA3a

Diagnostic Procedure 8
ACTUATOR MOTOR RELAY (L.E.D. flashing number 9)

INSPECTION START

Remove battery negativetermihat connector.
®
CHECK MOTOR REEAY SOLENOID RESISTANCE.
Disconnect control unit connector.
Check resistance between controfunit connector (vehicle side) terminats (17) and 28 .
Reslstance: 45-55
 terminals (8) and (5).
Resistance: 45-55

E
CHECK MOTOR REIAY DEACTI VATION.
Disconnectactuator connector. Check continuity between actua* tor connector(actuator side) terminals (4) and (10.

Check if motot's fusible link is blown.

Replace tusible link.

Perform ElectricalComponents Inspection - ACTUATOR. (See page Br-53.)

Replace fuse.

Diagnostic Procedure 9
 ACTUATOR SOLENOID VALVE RELAY (L.E.D. flashing number 10)

INSPECTION START

Remove batkery negativeterminal connector.

CHECK SOLENOLD VALVE RELAY RESISTANCE.
Disconnect control unlt connector.

Check resistance between controlunit connector (vehicle side) terminals (37) and (17).
Fesistance: 80 - 900

CHECK SOLENOID VALVE RELAY MOVEMENT. Disconnect actuator connector. Check continulty between actuatorcomnector (actuator side) terminals(6) and(9).

Check if solenoid valve relay fuse is blown.

Yes Replace solenoid valverelay.

Resistance: 80 - 90Ω

Repair harness between actuator and controlunit.

Perform EtectricalComponents inspection - ACTJATOA.
(See page BR-53.)

Diagnostic Procedure 10

CONTROL UNIT (L.E.D. flashing number 16)

Diagnostic Procedure 11

CONTROL UNIT OR POWER SUPPLY AND GROUND CIRCUIT (Warningactivates but L.E.D. comes off.)

Electrical Components inspection
 ACTUATOR (Not seli-diagnostle item)

畐

Turn checker mann switch on Check power supply incicator for coming on

Check checker valve relay indicator for coming on. checker connection is correct.

Select one valve - FL, Fh or RR. (valves corresponding to each wheel position.)
Select brake circuit pressure decreasing position by switch then turn motor switch of. Select pressure increasing position.

TROUBLE DIAGNOSES

Electrical Components Inspection (Cont'd)

CAUTION:

Do nof set checker at pressure decrease position for more than 5 seconds at a time. Actuator solenold valve may be damaged.

General Specifications

FRONT DISC BRAKE

Unit: mm (n		
Brake model	OPZ25V	OPF25V
Pad wear limit		
MInimum thickness	2.0 (9.079)	
Rotor repair timit		
Minimum thickness	24.0 (0.945)	28.0 (1.102)
Maximem funour	0.07	2028)

REAR DISC BRAKE
Unit: man $\left\{\begin{array}{l}\text { in) }\end{array}\right.$

Brake mode:	OPZ11VB
Pad wear limit	
Minimurt thickress	$2.0(0.079)$
Rotor repalr limit	
Ninimum thickness	
Maximum runcut	$16.0(0.630)$

PARKING DRUM BRAKE

Unit: mm (m)

Unit: mm (in)	
Brake model	DS17HD
Lining replacement limit	
Minimum thickness	
Drum repaif lifnit	$1.5(0.059)$
Maximum inner diamaner	

Unit: min (in)

Applied fode!	MIT	A/
Free height	$\begin{gathered} 186-196 \\ (7.32-7.72) \end{gathered}$	$\begin{gathered} 195-205 \\ (7.68-8.07) \end{gathered}$
Depressed height [under torce of $490 \mathrm{~N}(50 \mathrm{~kg}$. $\$ 10 \mathrm{lb}$ with engine furnifg! With A.B.S.	\$05 (4.13)	117 (4.33)
Withoul A.B.S.	95 (3.74)	105 (4.13)
Clearance between pedal stopper and threadec end of switches	0.3-1.0 (0.012-0.039)	
Pedal free play al clevis	1-3 $30.04-0.12\}$	

PARKING BRAKE

Number of notches [under force of 辁 N ($20 \mathrm{~kg}, 44 \mathrm{lb}$)]	6-7
Numper of notches (when warning lamp switch comes on)	1

STEERING SYSTEM

SECTION

CONTENTS

PRECAUTIONS ST- 2
PREPARATION ST- 3
ON-VEHICLE INSPECTION ST- 5
STEERING WHEEL AND STEERING COLUMN ST-10
POWER STEERING GEAR AND LINKAGE (Model PR26SE) ST-14
POWER STEERING OIL PUMP ST-26
TWIN ORIFICE POWER STEERING SYSTEM ST-29
TWIN ORIFICE POWER STEERING SYSTEM - Trouble Diagnoses ST-31
TWIN ORIFICE POWER STEERING SYSTEM -Trouble Diagnoses (Without SUPER HICAS system)$\mathrm{ST}+32$
TWIN ORIFICE POWER STEERING SYSTEM -
Trouble Diagnoses (With SUPER HICAS system)ST-42
SUPER HICAS SYSTEM ST-43
SUPER HICAS SYSTEM - On-vehicle Inspection ST-44
SUPER HICAS SYSTEM - Repair of Component Parts ST-48
SUPER HICAS SYSTEM - Trouble Diagnoses ST-60
SERVICE DATA AND SPECIFICATIONS (S.D.S.) ST-97
When you read wiring diagrams:- Read Gl section, "HOW TO READ WIRING DIAGRAMS".- See EL section, "POWER SUPPLY ROUTING" for power distribution circulf.When you perform trouble diagnoses, read GI section, "HOW TO FOLLOW FLOW CHARTin ThOUBLE DIAGNOSES'.

- Before disassembly, thoroughly ciean the outside of the unit.
- Disassembly should be done in a clean work area. \boldsymbol{t} is important to prevent the internal parts from becoming contaminated by dift or other foreign matter.
- When disassembilig parts, be sure to place them in order in a parts rack so they can be reinstalled in their proper positions.
- Use nylon cloths or paper towels to clean the parts; common shop rags can leave lint that might Interfere with their operation.
- Before inspection or reassembly, carefully clean all parts with a general purpose, non-flammable solvent.
- Before assembly, apply a coat of recommended A.T.F.* to hydraulic parts. Vaseline may be applied to 0 -rings and seals. Do not use any grease.
- Replace all gaskets, seals and O-rings. Avoid damaging O-rings, seals and gaskets during instailation. Pertorm functional tests whenever designated.
*: Automatic transmission fluld

PREPARATION

SPECIAL SERVICE TOOLS

Tool number Fool name	Description	
KV48100700 Torqse adapter		Measuring pinion rotating torque
ST27\$800001 Steering wheel ptiler		Removing steering wheel
HT72750000 Ball joint remover		Removing ball joint
ST27091000 Pressure gauge	To	Measuring oil pressure
KV48102500 Pressure gauge adapter		Measuring oll pressure
ST3127S000 (1) 1091030000 Torque wrench (2) H 76294000 Socket adapter (3) HT 62900000 Socket adapter	(1) (2) (3)	Measuring turning torque
KV48104400 Fack seal ring reformer		Reforming teflon ring
KV32101100 Pin punch		Removing and installing tube seat

COMMERCIAL SERVICE TOOLS

Tool name

Checking Neutral Position on Steering Wheel

Pre-checking

- Make sure that wheel alignment is correct.

Wheel alignment:

Refer to section FA for S.D.S.

- Verify that the steering gear is centered befcre removing the steering wheel.

Checking

1. Check that the steering wheel is in the neutral position when driving straight ahead.
2. If it is not in the neutral position, remove the steering wheel and reinstall it correctly.
3. If the neutral position is between two serrated teeth, loosen tie-rod lock nut and move tie-rod in the opposite direction by the same amount on both left and right sides to compensate for error in the neutral position.

Checking Steering Wheel Play

- With wheels in a straight-ahead position, check steering wheel play.

Steering wheel play:
$35 \mathrm{~mm}(4.38 \mathrm{~m})$ or less

- If it is not within specification, check steering gear assembly when front suspension and axle, steering gear assembly and steering column are mounted correctly.

Front Wheel Turning Angle

1. Rotate steering wheel all the way right and left; measure turning angle.

Turning angle of full turns:
Refer to section FA for S.D.S.
2. II it is not within specification, check rack stroke.

Rack stroke "L":

Refer to S.D.S.

Checking and Adjusting Drive Belts
 Refer to section MA for Drive Belt inspection.

Checking Gear Housing Movement

1. Check the movement of steering gear housing during stationary steering on a dry paved surface.

- Apply a force of $49 \mathrm{~N}(5 \mathrm{~kg}, 11 \mathrm{lb})$ to steering wheel to check the gear housing movement.
Turn off ignition key while checking.

Movement of gear housing:

$\pm 2 \mathrm{~mm}(\pm 0.08 \mathrm{in})$ or less
2. If movement exceeds the limit, replace mount insulator after confirming proper installation of gear housing clamps.

Adjusting Rack Retainer

- Perform this driving test on a that road.

1. Check whether vehicle moves in a straight line when steering wheel is released.
2. Check whether steering wheel returns to neutral position when steering wheel is released from a slightly turned (approx. 20°) position.

- If any abnormality is found, correct it by resetting adjusting screw.

Checking Fluid Level

Check fluid level.
Fluid level should be checked using "HOT' range on dipstick at fluid temperatures of 50 to $80^{\circ} \mathrm{C}$ (122 to $176^{\circ} \mathrm{F}$) or using "COLD" range on dipstick at fluid temperatures of 0 to $30^{\circ} \mathrm{C}\left(32\right.$ to $\left.86^{\circ} \mathrm{F}\right)$.

CAUTION:

- Do not overfill.
- Recommended fluid is Automatic Transmission Fluid "DEXRON ${ }^{\text {TM } ", ~ t y p e . ~}$

Checking Fluid Leakage

Check the lines for improper attachment and for leaks, ofacks, damage, loose connections, chating or deterioration.

1. Run engine at idle speed or $1,000 \mathrm{rpm}$.

Make sure temperature of fluid in oll tank rises to 60 to $80^{\circ} \mathrm{C}$ (140 to $176^{\circ} \mathrm{F}$).
2. Turn steering wheel right-to-left several times.
3. Hofd steering wheel at each "lock' position for five seconds and carefully check for fluid leakage.
CAUTION:
Do not hold the steering wheel in a locked position for more than 15 seconds.
4. It flud leakage at connectors is noticed, loosen flare nut and then retighten.
Do not overtighten connector as this can damage O-ring, washer and connector.

Bleeding Hydraulic System

1. Raise front end of vehicle until wheels clear ground.
2. Add fuid into oil tank to specified level. Meanwhile, quickly turn steering wheel fully to right and left and lightiy touch steering stoppers.
Fepeat steering wheel operation until fluid level no longer decreases.
3. Start engine.

Repeat step 2 above.

- Incomplete air bleeding will cause the following to occur. When this happens, bleed air again.
a. Generation of air bubbles in reservoir tank
b. Generation of clicking noise in oil pump
c. Excessive buzzing in oil pump

While the vehicie is stationary or while turning the steering wheel slowly, fluid noise may occur in the valve or oil pump. This noise is inherent in this steering system, and it will not affect performance or curability of the system.

Checking Steering Wheel Turning Force

1. Park vehicle on a levet, dry surface and set parking brake.
2. Start engine.
3. Bring power steering fluid up to adequate operating temperature. [Make sure temperature of fluid is approximately 60 to $80^{\circ} \mathrm{C}$ (140 to $176^{\circ} \mathrm{F}$).]
Tires need to be inflated to normal pressure.
4. Check steering wheel turning force when steering wheel has been turned 360° from the neutral position.

Steering wheel turning force: $39 \mathrm{~N}(4 \mathrm{~kg}, 9 \mathrm{lb})$ or less

5. If steering wheel turning force is out of specifications, check rack sliding force to detect condition of steering gear assembly.
a. Disconnect steering column lower joint and knuckle arms from the gear.
b. Start and run engine at idle to make sure steering fluid has reached normal operating temperature.
c. While pulling tie-rod slowly in the $\pm 11.5 \mathrm{~mm}$ ($\pm 0.453 \mathrm{in}$) range from the neutral position, make sure rack sliding force is within specification.

Average rack sliding force: Without HICAS

206-265 N(21-27 kg, 46-60 lb)
With HICAS
201.0-250.1 N ($20.5-25.5 \mathrm{~kg}, 45.2-56.2 \mathrm{ib})$
d. Check sliding force outside above range.

Maximum rack sliding force:
Not more than $39 \mathrm{~N}(4 \mathrm{~kg}, 9 \mathrm{lb})$ beyond above value
6. If rack sliding force is not within specification, overhaul steering gear assembly.

Checking Hydraulic System

Before starting, check belt tension, driving pulley and tire pressure.

1. Set Tool. Open shut-off valve. Then bleed air. (See "Bleeding Mydraulic System".)
2. Run engine.

Make sure temperature of fluld In tank rises to 60 to $80^{\circ} \mathrm{C}$ (140 to $176^{\circ} \mathrm{F}$).
WARNING:
Warm up engine with shut-off valve fully opened. If engine is started with shut-off valve closed, oll pressure in oll pump will increase to relief pressure, resulting in an abnormal rise in oil temperafure.
3. Check pressure with steering wheel fully turned to left and right positions with engine iding at $1,000 \mathrm{rpm}$.
CAUTION:
Do not hold the steering wheel in a locked position for more than 15 seconds.

Oil pump maximum standard pressure: $7,453-8,042 \mathrm{kPa}\left(74.5-80.4 \mathrm{bar}, 76-82 \mathrm{~kg} / \mathrm{cm}^{2}\right.$, 1,081-1,166 psi)
4. If oil pressure is below the standard pressure, slowly close shut-off valve and check pressure.

- When pressure reaches standard pressure, gear is damaged.
- When pressure remains below standard pressure, pump is damaged.

CAUTION:

Do not close shut-off valve for more than 15 seconds.
5. If oll pressure is higher than standard pressure, check ofl pump flow control valve.
6. After checking hydraulic system, remove Tool and add fluid as necessary, then completely bleed air out of system.

Removal

steering wheel

- Remove screw from rear of steering wheel and pull out horn pad.

Installation

Steering wheel

When installing steering wheel, apply multi-purpose grease to entire surface of turn signal cancel pin (both portions) and also to horn contact slip ring.

STEERING WHEEL AND STEERING COLUMN

Installation (Cont'd)

STEERING COLUMN

- When installing steering column, fingertighten all lower bracket and clamp retaining bolts; then tighten them securely. Do not apply undue stress to steering column.
- When attaching coupling joint, be sure tightening bolt faces cutout portion.
CAUTION:
After installing steering column, turn steering wheel to make sure it moves smoothly and that the number of turns from the straight forward position to left and right locks are equal.
Be sure that the steering wheel is in a neutral position when driving straight ahead.

Disassembly and Assembly

STEERING WHEEL AND STEERING COLUMN

Disassembly and Assembly (Cont'd)

- To remove combination switch, insert a suitable tool between mating portion. Lift switch bracket and pull it out.
- When disassembling and assembling, unlock steering lock with key.
- Install O-ring (() before inserting shaft into jacket tube. Ensure that rounded surface of snap ring faces toward bearing when snap ring is installed.
- Install snap ring on upper shaft with box wrench.
- Steering fock
a) Break self-shear type screws with a drill or other appropriate tool.
b) Install self-shear type screws and then cut off self-shear type screw heads.

Inspection

- When steering wheel can not be rotated smoothly, check the steering column for the following matters and replace damaged parts.
a. Check column bearings for damage or unevenness. Lubricate with recommended multi-purpose grease or replace steering column as an assembly, if necessary.
b. Check steering column lower shaft for deformation or breakage. Replace if necessary.
- When the vehicle is involved in a light collision, check steering column length " L," and steering column lower shaft length " L_{2} '. If it is not within specifications, replace steering column as an assembly.

> Steering column length " L, ":
> $745.9-747.5 \mathrm{~mm}(29.37-29.43 \mathrm{in})$

Steering column lower shaft length " L_{2} ": L.H.D.
$280.6-282.2 \mathrm{~mm}(11.05-11.11 \mathrm{in})$ R.H.D.
$314.6 \cdot 316.2 \mathrm{~mm}(12.39 \cdot 12.45 \mathrm{ln})$

Removal and Installation

© N.m (kg-m, tthb)

- Detach tie-rod outer sockets from knuckle arms with Tool.
- Install pipe connector.
(1) Low-pressure side
: $\mathbf{3 6} \mathbf{- 4 0} \mathrm{N} \cdot \mathrm{m}(\mathbf{3 . 7 - 4 . 1} \mathrm{kg}-\mathrm{m}, 27-\mathbf{3 0} \mathrm{ft}-1 \mathrm{lb})$
(2) High-pressure side

G: $30-35 \mathrm{~N} \cdot \mathrm{~m}(3.1-3.6 \mathrm{~kg}-\mathrm{m}, 22 \cdot 26 \mathrm{f}-\mathrm{Hb})$

POWER STEERING GEAR AND LINKAGE (Model PR26SE)

Removal and Installation (Cont'd)

- Observe specified tightening torque when tightening highpressure and low-pressure pipe connectors. Excessive tightening can damage threads or damaged connector O-ring.
- The O-ring in low-pressure pipe connector is larger than that in high-pressure connector. Take care to install the proper O -ring.

- Initially, tighten nut on tie-rod outer socket and knuckle arm to 29 to $49 \mathrm{~N} \cdot \mathrm{~m}$ (3 to $5 \mathrm{~kg} \cdot \mathrm{~m}, 22$ to $36 \mathrm{ft}-\mathrm{lb}$). Then tighten further to align nut groove with first pin hole so that cotter pin can be installed.
CAUTION:
Tightening torque must not exceed $\mathbf{4 9} \mathrm{N} \cdot \mathrm{m}(5 \mathrm{~kg}-\mathrm{m}, 36 \mathrm{ft}-\mathrm{lb})$.

- Before removing lower joint from gear, set gear in neutral (wheels in straight-athead position). After removing lower joint, put matching mark on pinion shaft and pinion housing to record neutral position of gear.
- To install, set left and right dust boots to equal deflection, and attach lower joint by aligning matching marks of pinion shaft and pinion housing.

M $\mathrm{N} \cdot \mathrm{mo}(\mathrm{kg}-\mathrm{m}, \mathrm{n}=\mathrm{tb})$
SST552e

Disassembly

1. Priof to disassembling, measure pinion rotating torque. Record the pinion rotating torque as a reference.

- Betore measuring, disconnect cylinder tube and drain fluid.
- Use soft jaws when holding steering gear housing. Handle gear housing carefully, as it is made of aluminum. Do not grip cylinder in a vise.

2. Remove pinion gear.

Be carelul not to damage pinion gear when removing pinion seal ring.
3. Remove tie-rod outer sockets and boots.
4. Loosen tie-rod inner socket by prying up staked portion, and remove socket.
5. Remove retainer.
6. Remove pinion assembly.
7. Drill staked portion of cylinder end cover with drill of 2 to 2.5 mm (0.079 to 0.098 in) diameter, until the staking is eliminated.
8. Remove gear housing end cover assembly with Tool.
9. Draw out rack assembly.
10. Remove rack seal ring.

- Using a heat gun, heat rack seal to approximately $40^{\circ} \mathrm{C}$ ($104^{\circ} \mathrm{F}$).
- Remove rack seal ring.
- Replace rack seal ring and O-ring with new ones.

Be careful not to damage rack.

Disassembly (Cont'd)

11. Remove center bushing and rack oil seal using tape wrapped socket and extension bar.
Do not scratch inner surfaces of pinion housing.

Inspection

Thoroughly clean all parts in cleaning soivent or automatic transmission fluld "DEXRON ${ }^{\text {TMM" }}$ type, and blow dry with compressed alr, If available.

BOOT

Check condition of boot. If cracked excessively, replace it.

RACK

Thoroughly examine rack gear, If damaged, cracked or worn, replace it.

PINION ASSEMBLY

- Thoroughly examine pinion gear. If pinion gear is damaged, cracked or worn, replace it.
- Inspect bearings to see that they roll freely and are free from cracked, pitted, or worn balls, rollers and races. Replace if necessary.

TIE-ROD OUTER AND INNER SOCKET

- Check ball joint for swinging force.

Tie-rod outer ball joint:
4.61-46.09 N
(0.47-4.7 kg, 1.04-10.36 lb)

Tierrod inner ball joint:
8.8-78.5 N
(0.9-8.0 kg, 2.0-17.6 lb)

- Check ball joint for rotating torque.

Tle.rod outer ball joint:
$0.29-2.94 \mathrm{~N} \cdot \mathrm{~m}$
(3.0 - $\mathbf{3 0 . 0} \mathbf{~ k g - c m , ~} 2.6$ - $26.0 \mathrm{in}-\mathrm{lb}$)
Tle-rod inner ball joint:
$1.0 \cdot 8.8 \mathrm{~N} \cdot \mathrm{~m}(10-90 \mathrm{~kg}-\mathrm{cm}, 8.7 \cdot 78.1 \mathrm{in}-\mathrm{lb})$

Inspection (Cont'd)

- Check ball joint for axial end play.

Tie-rod outer ball joint:
0 mm (0 in)
Tie-rod inner ball joint:
0 mm (0 in)

- Check condition of dust cover. If cracked excessively, replace it.

CYLINDER TUBES

Check cylinder tubes for scratches or other damage. Replace if necessary.

Assembly

1. Using a heat gun, heat rack seal ring (made of Teflon) to approximately $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$ and install it onto rack with your hand.

5s\%ins4e

- Using Tool, compress periphery of rack seal ring (made of Teflon) to position and secure it on rack.
Always insert the tool from the rack gear side.

2. Insert rack oil seal.

- Place plastic film into rack oll seal to prevent damage by rack teeth.
- Always remove plastic film after rack oll seal is positioned properly.
- Make sure lips of rack oll seal face each other.

Assembly (Cont'd)

3. Install center bushing and rack oil seal with rack assembly.
4. Insert rack oil seal and end cover assembly to rack then tighten end cover assembly.
5. Fasten cylinder end cover assembly to gear housing by staking.
6. Set rack gear in neutral position.

Rack stroke "L.":
Refer to S.D.S.
7. Coat seal hip of oil seal with multi-purpose grease and install new pinion oil seal to pinion housing with a suitable tool.

- Make sure lip of oll seal faces up when installed.

Assembly (Cont'd)

8. Install pinion bearing adiusting shim(s).

* Whenever pinion assembly, gear housing and rear housing are disassembled, replace shim(s) with new ones. Always use the same number of shim\{s) when replacing.

9. Install pinion seal ring on pinion gear assembly.

- Using a heat gun, heat pinion seal ring to approximately $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$ before installing it onto pinion gear assembly.
- Make sure pinion seal ring is properly settled in valve groove.

10. Apply a coat of multi-purpose grease to needle bearing roller and ail seal lip before installing pinion assembly in gear housing.
11. Install pinion assembly to pinion housing.

Be caroful not to damage pinion oll seal.
12. Apply a coat of multi-purpose grease to rear oil seal lip before installing rear housing.

Assembly (Cont'd)

SST326B

13. Install rear cover cap so that protrusion of rear housing cover is positioned as shown in figure at left.
Be careful not to damage worm ring and oll seal.
14. Install solenoid valve.
15. Install diaphragm spring at retainer.

- Always install retainer, spring washer and diaphragm spring in that order.
- Make sure convex end (painted white) of diaphragm spring faces outward when installing.

16. Install retainer spring and adjusting screw temporarily.

CAUTION:

Ensure steering gear spacer is installed with rubber side facing rack.

- Attach lock plate (2) to side rod inner socket (1).
- Insert steering gear spacer (5) to rack (4).
- Apply locking sealant to inner socket threads (3).

Screw inner socket into rack (4) and tighten to specified torque.

- Stake lock plate at two places.

17. Install steering gear spacer (3) to lock plate (3).

Assembly (Cont'd)

18. Tighten outer socket lock nut.

Tle-rod length "t":
Reter to S.D.S.
19. Measure rack stroke.

Rack stroke "L":
Reler to S.D.S.
20. Before installing boot, coat the contact surfaces between boot and tie-rod with grease.
21. Install boot clamps.

- To install, wrap boot clamp around boot groove twice. Tighten clamp by twisting rings at both ends 4 to $4-1 / 2$ turns with screwdriver while pulling with a force of approx. 98 N ($10 \mathrm{~kg}, 22 \mathrm{lb}$).
- Install boot clamps so that they are behind the steering gear housing when steering gear is attached to the vehicle. (This will prevent interference with other parts.)

Assembly (Cont'd)

- Twist boot clamp in the direction shown in figure at left.
- After twisting boot clamp, bend twisted and diagonaliy so it does not contact boot.

Adjustment

Adjust pinton rotating torque as follows:

1. Set gears to Neutral without fluid in the gear,
2. Coat the adjusting screw with locking sealant and screw it in.
3. Lightly tighten lock nut.
4. Tighten adjusting screw to a torque of 4.9 to $5.9 \mathrm{~N} \cdot \mathrm{~m}$ (50 to $60 \mathrm{~kg}-\mathrm{cm}, 43$ to $52 \mathrm{in}-\mathrm{lb})$.
5. Loosen adjusting screw, then retighten it to 0.05 to $0.20 \mathrm{~N} \cdot \mathrm{~m}$ (0.5 to $2 \mathrm{~kg}-\mathrm{cm}, 0.43$ to $1.74 \mathrm{in}-\mathrm{lb}$).
6. Move rack over its entire stroke several times.
7. Measure pinion rotating torque within the range of 180° from neutral position.
Stop the gear at the point of maximum torque.
8. Loosen adjusting screw, then retighten it to $4.9 \mathrm{~N} \cdot \mathrm{~m}$ (50 $\mathrm{kg}-\mathrm{cm}, 43 \mathrm{in}-\mathrm{lb})$.
9. Loosen adjusting screw by 60° to 100°.
10. Prevent adjusting screw from turning, and tighten lock nut to specified torque.

Adjustment (Cont'd)

11. Measure pinion rotating torque.

Within 100° from the neutral position:
Average rotating torque
$0.8-1.3 \mathrm{~N} \cdot \mathrm{~m}(8-13 \mathrm{~kg}-\mathrm{cm}, 6.9-11.3 \mathrm{in} \cdot \mathrm{lb})$
Maximum torque deviation
$0.4 \mathrm{~N} \cdot \mathrm{~m}(4 \mathrm{~kg} \cdot \mathrm{~cm}, 3.5 \mathrm{in}-\mathrm{lb})$
Except for above measuring range:
Maximum rotating torque
$1.9 \mathrm{~N} \cdot \mathrm{~m}$ ($19 \mathrm{~kg}-\mathrm{cm}, 16 \mathrm{in}-\mathrm{lb})$
Maximum force deviation
$0.6 \mathrm{~N} \cdot \mathrm{~m}(6 \mathrm{~kg}-\mathrm{cm}, 5.2 \mathrm{in}-\mathrm{lb})$

- If pinion rotating torque is not within specifications, readjust it by starting from procedure 4 , If pinion rotating torque is still out of specifications after readjustment, replace steering gear assembly.

12. Check rack sliding force on vehicle as follows:
a. Install steering gear onto vehicle, but do not connect tie-rod to knuckle arm.
b. Connect all piping and fill with steering fluid.
c. Start engine and bleed air completely.
d. Disconnect steering column lower joint from the gear.
e. Keep engine at idle and make sure steering fluid has reached normal operating temperature.
f. While pulling tie-rod slowly in the $\pm 11.5 \mathrm{~mm}(\pm 0.453 \mathrm{in})$ range from the neutral position, make sure rack sliding force is within specification.

Average rack sliding force:
Without HICAS
206-265 N(21-27 kg, 46-60 lb)
With HICAS
$201.0-250.1 \mathrm{~N}(20.5 \times 25.5 \mathrm{~kg}, 45.2-56.2 \mathrm{lb})$
g. Check sliding force outside above range.

Maximum rack sfiding force:
Not more than $39 \mathrm{~N}(\mathbf{4 k g}, 9 \mathrm{lb})$ beyond above value

- If rack sliding force is not within specification, readjust by repeating adjustment procedure from the beginning.
- If rack sliding force is still out of specification after readjustment, gear assembly needs to be replaced.

POWER STEERING OIL PUMP

Disassembly and Assembly

Pre-disassembly Inspection

Disassemble the power steering oll pump only if the following items are found.

- Oil leak from any point shown in the figure.
- Deformed or damaged pulley.
- Poor performance

Disassembly

CAUTION:

- Parts which can be disassembled are strictly limited. Never disassemble parts other than those specified.
- Disassemble in as clean a place as possible.
- Clean your hands before disassembly.
- Do not use rags; use nylon cloths or paper towels.
- Follow the procedures and cautions in the Service Manual.
- When disassembling and reassembling, do not let foreign matter enter or contact the parts.

- Remove snap ring, then draw drive shaft out. Be careful not to drop drive shaft.

- Remove connector.

Be careful not to drop control valve.

Inspection

inspect each component part for wear, deformation, scratches, and cracks. If damage is found, replace the part.

Assembly

Assemble oil pump, noting the following instructions.

- Make sure O-rings and oil seal are properly installed.
- Always install new O-rings and oil seal.
- Be careful of oil seal direction.
- Cam ring, totor and vanes must be replaced as a set if necessary.
- Coat each part with A.T.F. when assembling.
- Pay attention to rotor direction.
- When assembling vanes to rotor, rounded surfaces of vanes must face cam ring side.
- Insert pin (2) into pin groove (1) of front housing and front side plate. Then install cam ring (3) as shown at left.

Hydraulic Circuit

Schematic

Without SUPER HICAS

(fefor to BUPER HACAS Schemutle for modela equipped with SUPEA HICAS.)

SST5 548

Whthout SUPER HICAS
(Rotor to SUPER HACAS Wiring dagyram

Wiring Diagram

(9)
(8)

(9)

县

Precautions

BEFORE DIAGNOSING THE POWER STEERING SYSTEM, ENSURE THAT:

Vehicle stopped

a. Power steering components (gears, oil pump, plpes, etc.) are free from leakage, and that oil level is correct.
b. Tires are inflated to specified pressure and are of specified size, and that steering wheel is a genuine Nissan part.
c. Wheel alfgnment is adjusted properily.
d. Suspension utilizes the original design, and is free of modifications which increase vehicie weight.

Vehicle in operation

a. Understand the trouble symptoms.
b. Engine is operating properly.

PRELIMINARY KNOWLEDGE HELPFUL IN CONDUCTING DIAGNOSES

The power steering system is a twin orifice type, which uses a vehicle-speed sensing, electronic control design. Valve sensitivity is controlled in response to vehicle speed to achieve optimum steering effort. When a vehicle-speed signal is not entered into the power steering control unit for approximately 10 seconds during normal operation (see NOTE below), a fail-safe system activates to maintain the steering effort at a level similar to that experienced during high-speed operation.
More precisely, if a foot-brake signal, parking-brake signal and/or transmission position signal (N or P-range signal on automatic transmission models and a neutral or clutch signal on manual transmission models) are not entered, the power steering system is held in a "fail-safe" control state. When this happens, a symptom referred to as "heavy steering during sfationary turns" sometimes occurs.

NOTE:

Normal operation refers to a driving condition in which the foot brake pedal and parking brake lever are released, the shift lever is in any position other than " P " or " N " (automatic transmission models), the shlft lever set in any position except "N" (manual transmission models) and the clutch pedal is not depressed.

Dlagnostic Procedure 1
 SYMPTOM:

Heavy steering operation during stationary turns

N.G.

Check if terminal vottage drops

to 1 - 4.5 V range approx. 10 sec

TWIN ORIFICE POWER STEERING SYSTEM

Diagnostic Procedure 1 (Cont'd)

Diagnostic Procedure 1 (Cont'd)

A
2) CHECK PARKING BRAKE \quad O.K. \quad Go to 3).
SIGNAL.

Release foot brake pedal and apply parking brake lover.
Measure voltage between solpnoid valve terminals of "check" connector.

Yoltage:

4.4-8.6V (convetant)
... O.K.
Outside the above range or voilage iluctuations
... N.G.
IN.G.
Check if terminal voltage drops to $1.0-1.5 \mathrm{~V}$ renge approx. 10 seconds atter ignition switch is turned ON.

No change (outatide 4.4-8.8Y range) ... O.K.
Voltage drop ... N. 6.

TWIN ORIFICE POWER STEERING SYSTEM

Diagnostic Procedure 1 (Cont'd)

Diagnostic Procedure 1 （Cont＇d）
 Dlagnostic Procedure 1（Com（

A
3）CHECK NEUTRAL POSITION SIGNAL．
Release parking brake lever． Move shift lever to Neutral 〈A／t and M／T models）．Measure volt age between solenoid valve ter－ minals of＂check＂connector．

Voltage：

4．4－6．6V（constant）
．．．O．K．
Oulalde the $4.4-6.6 \mathrm{~V}$ range or Voltage fiuctuations ．．．N．G．
S57558日
，

Depress clutch pedal（M／T model）and move shift lever to ＂ $\mathrm{P}^{\prime+}(\mathrm{A} / \mathrm{T}$ model $)$ ．
Measure voltage betwoen sole－ noid valve terminals at＂check＂ connector．
Voltage：
4．4－6．6V（conntant）．．．O．K． Outside the above renge or vellage fluctuations ．．．N．G．

Check 接 terminal voltage drops
No change（outside $4.4 \cdot 6.6 \mathrm{~V}$ range）．．．O．K．
Voltage drop ．．．M．G．

TWIN ORIFICE POWER STEERING SYSTEM - Trouble Diagnoses (Without SUPER HICAS system)

Diagnostic Procedure 1 (Cont'd)

Diagnostic Procedure 1 (Cont'd)

Diagnostic Procedure 2
 SYMPTOM:

Light steering operation during high-speed driving
Raise rear wheels of ground and start engine.

Measure voltage between solenoid valve terminals of "check" connector while driving vehicie from 0 to $100 \mathrm{~km} / \mathrm{h}$ (0 to 62 MPH).

Voltage:
$0 \mathrm{~km} / \mathrm{h}$ (0 MPH): 4.4-6.6V ... O.K.
$100 \mathrm{~km} / \mathrm{h}$ (62 MPH): 1.8-2.8V ... O.K.

Consłant voltage ... N.G.

Mattunctioning vehicle speed sensor of speedometer

Diagnostic Procedure 2 (Cont'd)

Control Unit Inspection Table

The standard values (voltage), measured with an analog tester in contact with the control unit terminal, are shown below:

Terminal No.	Application	Standard value
1	Power	Approx. 12V
2	Ground	OV
3	Vehicle speed sensor input	1 volt (min.) and 5 volts (max.) are alternately repeated when vehicle is driven at very slow speeds.
4	Stop lamp switch input	Pressed: Approx. 12V Released: OV
5	Neutral switch input	OV (clutch engaged and shff lever in " N ") ... M/T models OV (selector lever in " N " or "P") ... A/T models 4-5V (except for the above)
6	Parking brake switch input	Applied: OV Released: Approx. 12V
7	Power steeting solencid valve output	$\begin{aligned} & 0 \mathrm{~km} / \mathrm{h} 4.4-6.6 \mathrm{~V} \\ & 100 \mathrm{~km} / \mathrm{h} 1.8-2.8 \mathrm{~V} \\ & \text { Fail-safe } 1.0-1.5 \mathrm{~V} \end{aligned}$

Periormance of Controller

Diagnostic Procedure 1

SYMPTOM:

Heavy steering operation during stationary furns or light steering operation during hlgh-speed driving.

tion durtng stationary turns or light steering operation during high-speed driving
YES ... N.G.
NO (Lighter steering operation; Stationary turns. Heavier steering operation; High-speed driving.)
... O.K.

E
CHECK POWER STEERING SOLENOID VALVE FOR PROPER
 OPERATION.
Disconnect solenoid valve connector.
Apply voltage between connector terminals (on solenoid valve side) and touch solenoid valve to ensure that it vibrates.
(Vibration is telt after applied voltage is femoved.)

$$
\begin{aligned}
& \text { Yes ... O.K. } \\
& \text { No ... M.G. }
\end{aligned}
$$

Matfunctioning power steering solenoid valve

HICAS Component Parts Location

System Diagram

Checking Fluid Level

Maintain the fluid level so that the lower surface of the float is maintained between the "L." and "H" marks on the gauge rod. The fluid level should be checked when the engine is stopped and the fluid temperature is normal.

CAUTION:

- Do not overtill.

- Recommended fluid is Automatic Transmission Fluid "Dexron ${ }^{7}{ }^{7}$ " type.

Checking Fluid Leakage

Check lines for proper attachment, leaks, cracks, damage, loose connections, chafing and deterioration.
Ftuid leakage should be checked for when the oif temperature is normal with the engine idling.

Measuring Rear Toe-in

Measure distance " A " and " B " at the same height as hub center.

Total toe-in:

```
        A-B:0.4 mm (0-0.16 in)
```

 20: \(0^{\prime}-22^{\prime}\)
 Refer to "SUPER HICAS" in section RA.

Inspection of HICAS System Operation
 CAUTION:

Ensure that shitt lever is set to "P" (A/T model) or "Neutral" (M/T model) before checking HICAS system operation. When CONSULT is used:

1. Have a helper sit in the driver's comparment and raise vehicle.
(Use a two-pole litt or a center pole lift so that the four wheels are free to rotate.)
2. Connect CONSULT unif to diagnosis connector and start engine.
3. Touch "START" on CONSULT display.
4. Touch 'HICAS', "ACTIVE TEST" and "SIMULATED DRIVE" in that order.

5. Touch "START" when MAIN SIGNALS display is reversed.

6. Touch "START."

After simulated drive condition has continued for 5 minutes, it will aulomatically cancel and CONSULT unit will then show "TEST IS INTERRUPTED TO AVOID OLL TEMP. RISE' display. To cancel this mode during self-diagnosis, simply touch "CANCEL".

Inspection of HICAS System Operation (Cont'd)

7. Operate engine at speeds greater than 2,000 rpm, and turn steering wheel 180° in one direction from the neutral position. Measure extension value of one power cylinder rod and retraction value of the other. Then, turn steering wheel 180° in the other direction from the neutral position, and measure extension value of one cylinder rod and retraction value of the other. Determine strokes of respective power cylinders by adding (measured) extension and retraction values.
Measure rod strokes in as short a period of time as possible. Standard stroke:

When turned to the right 2.6 mm (0.102 in)

When turned to the left 2.6 mm (0.102 in)

Total stroke

$$
5.2 \mathrm{~mm}(0.205 \mathrm{in})
$$

When CONSULT is not used:

1. Have a helper sit in the driver's compartment and raise vehicle.
(Use a 2-pole lift or a center pole lift so that the four wheels are free to rotate.)
2. Set HICAS system in self-diagnosis mode.
(1) Turn ignition switch "OFF".
(2) Set shift lever to " P " or " N " position (A / T model), or "Neutral" position (M/T model).
(3) Turn ignition switch "ON".
(4) Immediately start engine.
(5) Turn steering wheel from left to right (at least 20° from the neutral position) 5 times or more, then depress foot brake pedal at least 5 times all within 10 seconds after ignition switch has been turned "ON".
3. Set steering wheel to a point approximately 10° from the neutral position and check to ensure that rear wheels turn to the left and right alternately.

S5T378B

Inspection of HICAS System Operation (Cont'd)

4. Operate engine at speeds greater than $2,000 \mathrm{rpm}$, and turn steering wheel 180° in one direction from the neutral position. Measure extension value of one power cylinder rod and retraction value of the other. Then, turn steering wheel 180° in the other direction from the neutral position, and measure extension value of one cylinder rod and fetraction value of the other. Determine strokes of respective power cylinder rods by adding (measured) extension and retraction values.
Measure rod strokes in as short a period of time as possible.
Standard stroke:
When turned to the right
$2.6 \mathrm{~mm}(0.102 \mathrm{in})$
When turned to the left
$2.6 \mathrm{~mm}(0.102 \mathrm{in})$
Total stroke
$5.2 \mathrm{~mm}(0.205 \mathrm{in})$
Do not depress toot brake pedal during operation check, otherwise the operation will be stopped.

Bleeding Hydraulic System

Before bleeding air from the HICAS system, be sure to bleed air from the power steering system.
Refer to "SUPER HICAS SYSTEM - Repair of Component Parts'.

Power Cylinder

REMOVAL

- Detach power cylinder lower inks from axle housing sockets with Tool.
- Disconnect oll pipes from power cylinders and remove power cylinders.
CAUTION:
Plug openings of oil pipes and power cylinders to prevent entry of toreign particfes after removal.

INSTALLATION

1. Betore installing power cylinder on suspension member, wipe power cylinder bracket and mating surface of suspension member. Using the left side of the bracket as a reference point, locate the right side (oblong hole side) and install power cylinder.

CAUTION:

a. To prevent entry of toreign particles, clean oll pipes and connectors using dry compressed air.
b. Ensure that your hands are clean and free from foreign particles when connecting oll pipes.

Power Cylinder (Cont'd)

2. install power cylinders and oil pipes.
3. After instaling lower link assemblies, check toe-in to ensure that it is within specifications. If it is not within specifications, perform proper adjustments.
Refer to "SUPER HICAS" in section RA.

BLEEDING HYDRAULIC SYSTEM

Before bleeding air from the HICAS system, be sure to bleed air from the power steering system.
CAUTION:
Ensure that shift lever is set to "p" (A/T model) or "Neutral" (M/T model).
When CONSULT Is used:

1. Connect CONSULT unit to diagnosis connector on body side.
2. Have a helper sit in the driver's compartment and raise vehicle.
Use a two-pole Ift or a center pole Ift so that the four wheels are free to rotate.

3. Start engine.
4. Touch "START" on CONSULT display. (Display will then change.)
5. Touch "HICAS", "ACTIVE TEST", "SIMULATED DRIVE" and "START" in that order.
Before touching "START", ensure that MAIN SIGNALS display is reversed.
6. Touch "START".

Power Cylinder (Cont'd)

7. Operate engine at speeds greater than $2,000 \mathrm{rpm}$, and turn steering wheei 180° to the right from the neutral position. Loosen right power cylinder bleeder valve to bleed air, then retighten. Return steering wheel to the neutral position.
8. Operate engine at speeds greater than $2,000 \mathrm{rpm}$, and turn steering wheel 180° to the left from the neutral position. Loosen left power cylinder bleeder valve to bleed air, then retighten. Return steering wheel to the neutral position.
9. Repeat steps 7. and 8. until there are no air bubbles in fluid. While bleeding air from power cylinders, never allow fluid level to drop below inlet port of reservoir tank (by adding fluid as required).
10. Touch "CANCEL" on CONSULT display and turn ignition switch OFF.

When CONSULT is not used:

1. Have a helper sit in the driver's compartment, and raise vehicle.
Use a two-pole lift or center pole lift so that the tour wheels are free to rotate.
2. Set HICAS system in self-diagnosis mode.
(1) Turn ignition switch 'OFF'.
(2) Set shift lever to " P " or " N " position (A/T model), or "Neutral" position (M/T model).
(3) Turn ignition switch "ON".
(4) immediately start engine.
(5) Turn steering wheel from left to right (at least 20° from the neutral position) 5 times or more, then depress foot brake pedal at least 5 times all within 10 seconds after ignition switch has been turned "ON".
3. Set steering wheel within 10° from the neutral position. Ensure that rear wheels turn to the left and right alternately.
4. Operate engine at idling speed, and turn steering wheel 180° to the right from the neutral position. Loosen right power cylinder bleeder valve to bleed air, then retighten. Return steering wheel to the neutral position.
5. Operate engine at idling speed, and turn steering wheel 180° to the leff from the neutral position. Loosen left power cylinder bleeder valve to bleed air, then retighten. Return steering wheel to the neutral position.
6. Repeat steps 4. and 5, above until there are no air bubbles in fluid. While bleeding air from power cylinders, never allow fluid level to drop below infet port of reservoir tank (by adding fluid as required).
7. Turn ignition switch OFF to complete self-diagnosis operation.

Power Cylinder (Cont'd)

DISASSEMBLY AND ASSEMBLY

sstsiob
Power cylinder assembly cannot be disassembled. When it is malfunctioning, repiace power cylinder as an assembly.

DISASSEMBLY

1. Remove clamps from left and right dust boots, and move dust boots toward outer links.
2. Attach wrenches to left and right ball joint sockets, and turn in directions that loosen lower links. Remove one of loosened lower link assemblies.
3. Loosen stroke stopper lock nut from which lower link assembly was removed, and remove stroke stopper.

Power Cylinder (Cont'd)

ASSEMBLY

1. Install stroke stopper and lock nut on the lower link assembly to be assembled.
2. Apply Locktite to inner ball joint thread. Attach a wrench to "width across flats" section of piston rod (located on the other side) to prevent rod from turning. Install lower link assembly.
3. After installing stroke stopper and lock nut on the other lower link assembly, install lower link assembly. Attach a wrench to inner ball joint (to prevent it from turning), tighten inner socket to specified torque.

Inner socket:
M: $78-98 \mathrm{~N} \cdot \mathrm{~m}(8-10 \mathrm{~kg}-\mathrm{m}, 58-72 \mathrm{f}-\mathrm{lb})$
4. If stroke stopper was moved during removal of lower link, adjust it after installation, as described below:
(1) Loosen lock nut which secures stroke stopper.
(2) Turn stroke stopper until clearance between inner ball joint and stroke stopper is 2.9 to $3.1 \mathrm{~mm}(0.114$ to 1.122 in$)$ on each side.
(3) Tighten lock nut securely.

Lock nut:

FI: 49-69 N $\cdot \mathrm{m}(5.0-7.0 \mathrm{~kg} \cdot \mathrm{~m}, 36-51 \mathrm{ft}-\mathrm{b})$
(4) Recheck clearance between inner ball joint and stroke stopper on each side.

5. Install dust boot using new boot band and clamp.

- Apply a coat of grease to grooves at boot location.

Oll Pump

PRE-DISASSEMBLY INSPECTION

Disassemble the power steering oil pump only if the following items are found.

- Oif leak from any point shown in the figure.
- Deformed or damaged pulley.

Procedures for disassembly and assembly are the same as those for the power steering oil pump.

Disassembly

CAUTION:

- Parts which can be disassembled are strictly limited. Never disassemble parts olther than those specified.
- Disassemble in as clean a place as possible.
- Clean your hands before disassembly.
- Do not use rags; use nylon cloths or paper towels.
- Follow the procedures and cautions in the Service Manual.
- When disassembling and reassembling, do not let forelgn matter enter or contact the parts.

1. Remove connector.

Be careful not to drop control yalve.
Be carelul not to confuse main side with sub side.
2. Remove rear housing.
3. Remove center housing.
4. Remove cam ring, rotor and other parts from center housing (sub side).

SS7398E

5. Remove cam ring, rotor and other parts from front housing (main side).
Be careful not to confuse main side with sub side.
6. Remove snap ring, then draw drive shaft out.

Be careful not to drop drive shaft.

Disassembly (Cont'd)

7. Remove oll seal.

Be careful not to damage front housing.

Inspection

If any of the following parts are scratched or damaged, replace oil pump assembly.

- Mating surfaces of front housing and cam center housing
- Mating suffaces of rear housing and cam center housing
- Front housing bushing (at drive shaft support location)
- Flow control valve
- Drive shaft
- Rotor

Assembly

Assemble oil pump in the reverse order of disassembly, noting the following instructions.

- Before installation, coat the O-rings and oil seal with A.T.F.
- Make sure O-rings and oil seal are property installed.
- When assembling vanes to rotor, rounded surfaces of vanes must face cam case side.
- Always install new O-rings and oil seal.
- Be careful of oll seal direction.

1. Press oil seal into front housing and apply grease to sealing lips.
2. Press shaft assembly into front housing and install snap ring.

Assembly (Cont'd)

3. Install component parts on front housing in the order indicated below:
3) 0 -ring $\times 2$
2) Wave washer
3) Side plate
4) Rotor [thickness: 16.25 mm (0.6398 in) (main side); 13 mm (0.51 in) (sub side)]
5) Vane
6) Pin
7) Cam ring lthickness: 16.25 mm (0.6398 in) (main side); 13 $\mathrm{mm}(0.51 \mathrm{in})$ (sub side)]
4. Place packing on front housing and position center housing on the packing. In the manner similar to step 3. above, install component parts on front housing (sub side).

CAUTION:

- Ensure that O-rings are positioned properly.
- Ensure that vane is installed with curved side facing cam ring.
- Use cam, rotor vane as original single unit.
- Ensure that control valve moves smoothly.
- Pay attention to rotor direction.
- Pay attention to cam ring direction.

HICAS Solenoid Valve and Fail-safe Valve

- Do not loosen fock nut which secures solenoid since HICAS solenoid fair-safe valves are of types that should not be disassembled.
- If any part is found to be malfunctioning, always replace as a valve assembly.
- Whenever tubes are disconnected, check tube seat for scratches or damage. A scratched or cracked tube seat may cause ofl leakage. Replace it using pin punch.

		HICAS solenoid valve
Part No.	Fail-safe valve	
A (dia.)	mrm (in)	$49528-31 \mathrm{~m} 10$

Steering Angle Sensor

- Ensure that steering angle sensor bolts are secure and tight.
- If any part of steering angle sensor is malfunctioning, teplace steering angle sensor assembly.

Steering Wheel

CHECKING NEUTRAL POSITION

- Check that the steering wheel is in the neutral position when driving straight ahead at a speed of at least $70 \mathrm{~km} / \mathrm{h}$ (43 MPH).
- If it is not in the neutral position, remove the steering wheel and reinstall it correctly.
- If the neutral position is between two serrated teeth, loosen tie-rod lock nut and move tie-rod in the opposite direction by the same amount on both left and right sides to compensate for error in the neutral position.
Contents
How to Perform Trouble Diagnoses for Quick and Accurate Repair ST-61
Symptom Chart ST-62
Preliminary Check ST-63
Component Parts and Harness Connector Locations ST-66
CIrcult Diagram tor Ouick Pinpoint Check ST-67
Wiring Diagram ST-68
Self-diagnosis (When CONSULT is used) ST-70
Self-dlagnosis (When CONSULT is not used) ST-73
Diagnostic Procedure 1 ST-76
Diagnostic Procedure 2 ST-77
Diagnostic Procedure 3 ST-79
Diagnostic Procedure 4 ST-80
Diagnostic Procedure 5 ST-86
Dlagnostic Procedure 6 ST-88
Diagnostic Procedure 7 ST-89
Diagnostic Procedure 8 ST-90
Diagnostic Procedure 9 ST-91
Dlagnostic Procedure 10 ST-92
Diagnostic Procedure 11 ST-94
Diagnostic Procedure 12 ST-95
Control Unit Inspection Table ST-96

How to Perform Trouble Diagnoses for Quick and Accurate Repair

WORK FLOW

Symptom Chart

DIAGNOSTIC TABLE

Preliminary Check

CHECK 1

Checking fluid level and fluid leakage

Refer to 'SUPER HICAS SYSTEM - On-vehicle Inspection' on page ST-44.

CHECK 2

Perform self-diagnosis.
Refer to "Self-diagnosis" on page ST-70.

Preliminary Check (Cont'd)

CHECK 3

Perform rear wheel action check.
When CONSULT is used:

1. Have a heiper sit in the driver's compartment, and raise vehicle.
(Use a two-pole lift or a center pole lift so that the four wheels are free to rotate.)
2. Connect CONSULT unit to diagnosis connector and start engine.
3. Touch "START" on CONSULT display.
4. Touch "HICAS", "ACTIVE TEST" and "SIMULATED DRIVE" in that order.
5. Touch "START" when "MAIN SIGNALS" display is re" versed.
6. Touch "START".

After simulated drive condition has continued for 5 minutes, it will automatically cancel and CONSULT unit will then show "TEST IS INTERRUPTED TO AVOID OL TEAP RISE" display. To cancel this mode during self-diagnosis, simply touch "CANCEL".

7. White running engine at speeds greater than $2,000 \mathrm{rpm}$, turn steering wheel 180° to the left and right from the neutral position. Ensure that rear wheels steer in response to rotation of steering wheel.

Preliminary Check (Cont'd)

When CONSULT is not used;

1. Have a helper sit in the oriver's compariment and raise vehicie.
(Use a 2-pole lift or a center pole lift so that the four wheels are free to rotate.)
2. Set HICAS system in self-diagnosis mode.
(1) Turn ignition switch "OFF".
(2) Set shit⿻ter lever to "P" or " N "" position (A/T moded), or "Neutral" position (M/T model).
(3) Turn ignition switch "ON".
(4) Immediately start engine.
(5) Turn steering wheel from left to right (at least 20° from the neutral position \} 5 times or more, then depress foot brake pedal at least 5 times all within 10 seconds after ignition switch has been turned "ON".
3. Set steering wheel to a point approximately 10° from the neutral position and check to ensure that rear wheels turn to the left and right alternately.

Component Parts and Harness Connector Location

Circuit Diagram for Quick Plnpoint Check

5swand

Wiring Diagram

L.H.D. MODELS

Wiring Dlagram (Cont'd)

R.H.D. MODELS

SST4:3B

SST4148

Self-diagnosis (When CONSULT is used)

- Start engine.
- Touch START (on CONSULT display).
- Touch HICAS.
- Touch SELF-DIAG RESULTS.
- Self-diagnostic results are shown on display. Refer to Table on page ST-71.

For reference:

Recording inpul/output signals using data monltor function

- Start engine.
- Touch START (on CONSULT display).
- Touch HICAS.
- Touch DATA MONITOR.
- Check to ensure that the ALL SIGNALS display is reversed.

Touch START. Refer to Table on page STw72.

Self-diagnosis (When CONSULT is used) (Cont'd)

- Touch RECORD to record data.

Ensure that ON-OFF signal is produced when signal is entered from each sensor while monitoring.
To cancel data recording during operation, touch CANCEL.

Self-diagnosis items

Diagnostic item	Description	Remarks
NO FAILURE*	- No failure has been detected.	
VEHICLE SPEED SENSOR INO SIGNALI (a)	- No venicle speed signal is entered atter vehicle has been operated.	
VEHICLE SPEED SENSOR [SIG-SUDDEN TURN] (b)	- Vehicle speed signal abrupliy changes during operation.	
STEERING ANGLE SEN [NO ANG SIGNALI (a)	- Steering angle has not been changed while driving at a speed of at least $60 \mathrm{~km} / \mathrm{h}(37 \mathrm{MPH})$.	
STEERING ANGLE SEN [NO NEUT SIGNALI (b)	- Neutral (ON) signal is not entered after vehicle has been driven.	
STEERING ANGLE SEN [NEUT SIG-360 OFF] (C)	- Neytral (ON) signal is not entered even atter steering wheel has been turned at teast 360°.	
STEERING ANGLE SEN [NEUT SIG-30^ON] (C)	- Neutral (ON) signal is continually shown at steering angle of at teast 30°.	
FAILSAFE VALVE [ABNORMAL SIGNAL]	- Output terminal voltage is abnormal due to broken or shorted HfCAS fail-safe vatue circtit.	
HICAS SOLENOID-R [ABNORMAI SIGNAL]	- Output terminal voltage is abnormal due to broken or shorted HICAS solenoid valve (RH) circult.	
HICAS SOLENOIE-L [ABNORMA青 SIGNAL]	- Output terminal voltage is abnormal due to broken or shorted HICAS solenoid valve ($\mathrm{Z} H$) circuit.	
POWER STEERING SOL. [ABNORMAL SIGNAL]	- Output tefminal voltage is abnormal due to broken or shorted power steering solenotd valve circait.	

Data monitoring Items

O: Standard
© : Optional selection

Item	Monitor itern selection		Remarks
	All items	fem menu	
Vehicie speed sensor \quad (km/h $\}$	\bigcirc	\triangle	-
Steering angle sensor (deg)	O	\triangle	Abnormal value is shown before straightahead position (' 0 ") is set and after battery is disconnected and reconnected.
Neutral signal (ON-OFF display)	\bigcirc	\triangle	-
Stop lamp switch signal (ON-OFF display)	0	Δ	-
Parking brake/Cluten switch (ON-OFF display)	0	\triangle	Glutch switch signal for M/T model and parking brake switch signal for A/t model.
Neutral switch (ON-OFF display)	0	\triangle	Neutral switch signal for M/T model and inhibitor relay (N or P) signal for $\mathrm{A} T \mathrm{~T}$ model.
Engine rpm ("OVER 1,500 " of "UNDER 1.500 " is shown.)	0	\triangle	Engine speed greater thanless than 1,500 rpmis is shown.
HICAS solenoid valve (A / L) (A)	0	\triangle	Controlied current flow from controf tinit to HICAS solenoid valve and direction of current control are shown.
Power steering sotenold valve (A)	\bigcirc	\triangle	Controfied current flow from control unit to power steering solenoid valve is shown.
Fall-safe valve (ON-OFF display)	0	\triangle	ON (when connected) or OFF (whea disconnected) is shown.
Fall-sate system (CUT-NON display)	0	\triangle	NON (fail-sate valve ON) referring to "normal" conditioner CUT (tail-safe valve OFF) when in "fail-safe" condition are shown.
Warning lamp (ON-OFF display)	0	\wedge	Ilfumination control of control unit's HICAS waming lamp is shown.
C Voltage (V)	-	\triangle	Voltage measured with voltage probes is shown.
- ${ }^{\text {E }}$ Pulse (ms, Hz or)	-	\triangle	Value measured with pulse probes is shown. If putse cannot be measured, "f" is down. "\#" is also shown at feft of final data until measurement fesults are determined.

Self-diagnosis (When CONSULT is not used)
 SELF-DIAGNOSIS PROCEDURES

1. Input starting conditions for self-diagnosis.
(1) Turn ignition switch "OFF".
(2) Set shift lever to " P " or " N " position (A / T model), or "Neutral" position (M/T model).
(3) Turn ignition switch "ON".
(4) Immediately start engine.
(5) Turn steering wheel from left to right (at least 20° from the neutral position) 5 times or more, then depress foot brake pedal at least 5 times all within 10 seconds after ignition switch has been turned "ON".
2. Input self-diagnosis item.
(1) Depress and release foot brake pedal.
(2) Turn steering wheel from left to right (at least 20°) from the neutral position.
(3) (M/T model)

Depress clutch pedal and move gear shift lever to any position other than Neutral and return to Neutral. Release clutch pedal.
(A/T model)
Disengage and engage parking brake lever. Move shift lever to any position other than Neutral or Parking and return to Parking.
(4) Move car at least 3 meters (10 ft) forward and proceed at an indicated speed of at least $2 \mathrm{~km} / \mathrm{h}(1 \mathrm{MPH})$ in self-diagnosis mode.

3. The self-diagnosis mode will then appear in the "HICAS" warning lamp.
When all systems are normal:
HICAS warning lamp flashes at 0.25 -second intervals.

Self-diagnosis (When CONSULT is not used) (Cont'd)

When there is a system maifunction:

Example: When (2) HICAS solenoid valve LH, (4) power steering solenoid valve and (5) vehicle speed sensor have experienced a malfunction.
The warning lamp displays abnormal mode (1 sec . ON).
A If fail-safe system was operated (fail-safe valve is operating) when ignition switch was turned OFF for the last time, fail-safe items will be displayed in numerical order in modes indicated. After all items are displayed, display is repeated again.

- To change the display mode to A, turn OFF ignition switch after mode B is displayed.
- When battery charge is insutficient, mode E is displayed. A

Self-diagnosis (When CONSULT is not used)

8 If fail-safe system was not operated when ignition switch was turned OfF for the last time, display will show self-diagnosis results in numerical sequence in modes indicated below. After ali self-diagnosis results are shown, display is repeated again.

CANCELING THE SELF-DIAGNOSIS FUNCTION

There are three methods for canceling the selt-diagnosis function, as described below:

- The self-diagnosis system is canceled by the turning ignition switch "OFF".
- After self-diagnosing has been operated for approximately 5 minutes, the self-diagnosis system will be automatically canceled.
- The self-diagnosis system is canceled by a venicle speed of $30 \mathrm{~km} / \mathrm{h}$ (19 MPH) or over.

Diagnostic Procedure 1

SYMPTOM:
No warning lamp comes on when ignition switch is turned "ON".

CHECK WARNANG LAMP

Check and repair witing

Diagnostic Procedure 2
SYMPTOM (A):
Warning lamp comes on during operation.

Repair malfunctioning part detected by self-diagnosis.
Refer to Diagnostic Procedures 5 to 12.

Diagnostic Procedure 2 (Cont'd)

SYMPTOM (B):

Warning lamp comes on when ignition switch is turned ON ; however, it does not go out after engine start.

Diagnostic Procedure 3
SYMPTOM:
Abnormal noise occurs.

Disconnect HiCAS solenoid $\xrightarrow{\text { Yes, }}$ valve connector and check noise for charfges.

Noise stops.

E
Bleed air from hydraulic system.
Reter to page 5T-49.

Diagnostic Procedure 4
SYMPTOM:
Vehicle behavior is abnormal. (Vehicle sways or jerks.)

Diagnostic Procedure 4 (Cont'd)

A. Static HICAS characteristic performance check

SST441E

B

- Run engine at a speed of less than 2,000 rpm.
- Turn steering wheel approximately 180° to the feft or right. Each stroke from neutral position:
2.1-3.1 mm
(0.083-0.122 in)

Refer to page ST-46.
C
CHECK RESISTANCE OF HICAS SOLENOID VALVE.
Stop engine and disconnect HiCAS solenoid valve.
Measure resistance between HICAS solenoid valve connector terminals (22) and 23), and (116).

Posistance

4-6 6

Diagnostic Procedure 4 (Cont'd)

HICAS sofenoid valve outpul amperes:
0.9 - 1.0A

OR

Set self-diagnosis mode.

- Run engine at a speed of more than $2,000 \mathrm{rpm}$.
- Turn steening wheel approximately 180°.
- Measure voltage across control unit con" nector teaminals 23 and (23) , 24.

Output voltage:
More than 3.8v

LIEF PRESSURE.

- Cancel seff-diagnosis mode.
- Check HICAS oll pump relief pressure with engine running at a speed of more than 2,000 rpm.

Rallel preseure:
More than $5,884 \mathrm{kPa}$
(58.8 bar, $60 \mathrm{~kg} / \mathrm{cm}^{2}$, 853
psil)

SUPER HICAS SYSTEM - Trouble Diagnoses

Diagnostic Procedure 4 (Cont'd)

- Run engine at a speed of more than $2,000 \mathrm{rpm}$ and turn steering wheel approximately 180° to the left and right.
- Check oil pressure at bleeder valve of power cylinder.

Oil pressure:
*ore than $\mathbf{3 , 9 2 3 ~ k P a}$
(39.2 bar, $40 \mathrm{~kg} / \mathrm{cm}^{2}, 569$ p8i)

Replace power cylinder.

Replace HCAS solenoid valve.

CHECK POWER CYLINDER STROKE
Each stroke from neutral pros-
tion:
$2.1-3.1 \mathrm{~mm}$
(0.083-0.322 in)

Heler to page ST-46.
 safe valve.

Diagnostic Procedure 4 (Cont'd)

B. Dynamic HICAS characterlstic performance check

CHECK REAR WHEEES FOR PROPER MOVEMENT.

Ensure that rear wheel turns to the left or right when steering wheel is turned to the left or right. OR

Ensure that rear wheels intermittently turn to the left and right when steering wheel is set to the neutral position.

D
CHECK POWER CYLINDER STROKES.
Each stroke from neuiral position:
More than 1.6 min
(0.063 in)

SUPER HICAS SYSTEM - Trouble Diagnoses

Diagnostic Procedure 4 (Cont'd)

SST446E

B

Diagnostic Procedure 5

SYMPTOM:
System is not set in self-diagnosis mode.

CHECK CONNECTOR CONTINU. ITY.
Disconned steering angle sensor connector and control unit connector, and reconnect them firmly. Conduct self-diagnosis.

B

CHECK STOP LAMP ${ }^{\text {N- }}$ PUT SIGNAL.

MONITOR mode.
ON-OFF display Of
Check that stop lamp input is present at control unit connector terminals (1) and (94).

Brake ON:
Approx|mately 12 V
Brake OFF:
ov

CHECK STEERING NEUTRAL POSITION SENSOR INPUT SIGNAL.
Set CONSUET in DATA
MONITOR mode.
ON-OFF display
OR

Check that steering neu-
tral input is present at control unit connector terminals (7) and (34) when steering wheel is turned to the left and right at least 20° from the neutral position.
Neutral position:
Approximately 5 V
When turned at lasst 20° :
OV
(a).

SUPER HICAS SYSTEM - Trouble Diagnoses

Diagnostic Procedure 5 (Cont'd)

S5T4228

Diagnostic Procedure 6

SYMPTOM:
HICAS solenoid valve (left and right) output is not present.

CHECK CONNECTOR CONTINU ITY.

Poor connector connection

Disconnect HICAS solencid valve connector and control unit connector, and reconnect them fitmly. Conduct self-diagnosis.

CHECK RESISTANCE OF LEFT AND RIGHT HICAS SOLENOLD VALVES (on solenoid side).

1) Disconnect HICAS solenoid valve connector.
2) Measure resistance between

MIGAS solenoid valve connector terminals (23) and (23), and (116).

Resistance:
4. 8Ω

C
CHECK RESISTANCE OF LEFT AND RIGHT HICAS SOLENOID
 VALVES fon control unit side).

1) Disconnect control unit connector.
2) Measure resistance between body connector terminals (2) and (23), and (24).
Resislance:
$4 \times 6 \Omega$
N.G.

Repair or replace harness be" tween control unit and HICAS solenoid valve.

SST4n部

Diagnostic Procedure 7

SYMPTOM:
Fail-safe valve output is not present.

CHECK CONNECTOR CONTINUITY.

Disconnect fail-safe valve connector and control unit connector, and reconnect them lirmiy. Conduct self-diagnosis.

BI	N.G.
CHECK RESISTANCE OF FAIL-	

1) Disconnect fail-sate valve connector.
2) Measure resistance between connector terminals (1) and (114).

Resistance:
$13 \cdot 17 \Omega$

CHECK RESISTANCE OF FAIL. SAFE VALVE (on control tnit side).

1) Disconnect control unit connector.
2) Measure res/stance between body connectof terminals
(4) and (24).

Pasistance:
$13 \cdot 17 \Omega$

Diagnostic Procedure 9
SYMPTOM:
Vehicle speed signal is not present.

CHECK CONNECTOR CONTINU-
 Poor connector connection
IT.
Disconnect control unit connedtor and reconnect it firmly. Conduct self-diagnosis.

8

CHECK CONTROL UNIT INPUT SIGNAL.

Replace control unit.

1) Raise rear end of vehiche so that rear wheels rotate freely.
2) Set CONSULT in DATA MONITOR mode.
Vehicle speed display (knish)

OR
Measure voltage varialions between control: unit connector termsnals(6) and 24 while slowly rotating fear wheels by hand. Voltage must change between 0 and 5V. N. G .

Repair or replace harness between speed sensor or control unit and speedometer.

SS7418B

SST640B

357641 B

Diagnostic Procedure 10

SYMPTOM:
Steering angle sensor input is not present.
 between steering angle sensor connector terminals (7). (15) and (6), and (11).

Voltage must charge from 0 to at fedst 5V.

Control Unit Inspection Table

The standard values (voltage) measured with an analog tester, in contact with the control unit terminal, are shown below:

Terminal No.	Application	Standard value
1	Service support CluK input	-
2	Service support RX output	-
3	IGN power supply	Key switch ON: Approximately 12V Key switch in other position: DV
4	Battery	Approximately 12 V
5	E.C.C.S. revolution signa	-
6	Vehicle speed signal	Rear wheel rotating OV $\rightarrow \longrightarrow$ greater than 5V (approx.), intermittent
7	Steering neutral position sensor	Approximately 5 V (Neutral position)
8	Hesistance of power steering solenoid valve	4-6S
9	Service support TX output	-
10	Ground	OV
11	Stop lamp switch signa	Brake ON: Approximately 12 V Brake OFF: OV
13	Parking brake signal	Parking brake engaged (A/T)/ ciutch disengaged (M / T): Approximately 12 V
14	Inhibitor signal	Shift lever in any position other than Parking: Approximately 5 V
15	Steering angle sensor-i signal	Steering wheel furned $0 \longleftrightarrow$ Approximately 5 V . intermittent
16	Steering angle sertsor-2 signal	-
17	Ground	0 V
18	Resistance of fail-safe valve	13-178
19	IGN power supply	Ignition switch ON: Approximately 12 V Ignition switch in other position: 0 V
20	HICAS warning lamp	-
22	Resistance of HICAS solenoid valve (R.C.)	4-68
23	Resistance of HiCAS solenoid valve \{L.H.\}	4-68
24	Ground	OV

General Specifications

Applied model	Austratia	Elfrope
	Without SUPER HICAS	With SUPER HICAS
Steering model	Power steering	
Steering gear type	PR26SE	
Steering overall gear ratio	16.9	16.7
Turn of steering wheel (Lock to lock)	2.7	2.7
Steering columm lype	Collapsible	

Inspection and Adjustment

GENERAL

Steering wheel axia! play mm (in)	0 (0)
Steering wheel play mert (irt)	35 (1.38) of less
Govemest of gear houstng $\mathrm{mm}(\mathrm{in})$	\pm 2 ($\pm 0.08)$ or less

STEERING COLUMN

Steering poskicion	R.H.D.	L.H.D.
Steering columal length " L_{1} " mm (in)	745.9-747.5 $\{29.37+29.43\}$	
Steering columa lower shaft length "LL ${ }_{2}$ " mm $\{$ in\}	$\begin{gathered} 314.8-316.2 \\ (12.39-12.45) \end{gathered}$	$\begin{gathered} 280.6-282.2 \\ (11.05-11.11) \end{gathered}$

\$5T3158

STEERING GEAR AND LINKAGE

Steering gear type	Pratst
Tie-rod ouler ba⿰l jomt	
Swinglng force (at cofter pin hole) $\mathrm{N}\left\{\mathrm{kg}_{1}\right.$ lb)	$\begin{gathered} 4.61-46.1 \\ (0.47-4.7,7.04-10.4) \end{gathered}$
Rotating torque $\mathrm{N} \cdot \mathrm{ml}$ ($\mathrm{kg}-\mathrm{cm}, \mathrm{in}$ - 茟 b$)$	$\begin{gathered} 0.29-2.94 \\ (3.0-30.0 .2 .6-26.0) \end{gathered}$
Axial end play mman	0 (0)
Tie-red taner ball joint	
Swinging torce** $\quad N(\mathrm{~kg}, \mathrm{tb})$	$\begin{gathered} 6.8-78.5 \\ \{0.9-8.0 .2 .0-17.6\} \end{gathered}$
Rotating torque 	$\begin{gathered} 1.0-8.8 \\ (10-90.8 .7-78.1) \end{gathered}$
Axial end play mint (in)	0 (0)
Tie-rod standard length 'L' mon (in)	\$55 (6.10)

*: Measuring point

Rack stroke "L'	mm (if)	59.5 (2.343)

SST3078

Inspection and Adjustment（Cont＇d） POWER CYLINDER LOWER LINK （SUPER HICAS）

S\＄T486B

Power cylinder lower inin ball joint		
Swinging torce＊	N 2 kg ，如	$\begin{gathered} 2.9-41.2 \\ (0.3-4.2,0.7 \times 9.3) \end{gathered}$
Axlal emad play	mirs（in）	0 （0）
Power cylinder tower ink standara length＂ 1 ＂＇	mm（in）	309.5 （12．19）
Stroke	mem（in）	3.0 （0．118）

＊：Measuring point

POWER STEERING

Applied model	Whthout SUPE～ HICAS	With SUFFA HICAS
Retainer adjustment Adjusting screw Initibit tohtening torque N．m（kg－Em，in－㕩）	4．9－5．9（50－60，43－52）	
Petightening torgde after loosening	0.2 （2． 1.7 ）	
Tightening torque alter gear has settled	$4.9(50,43)$	
Meturning angle degree	60 $0^{\circ}-100^{\circ}$	
Pinion gear preload witholt gear oil $\mathrm{N} \cdot \mathrm{m}\{\mathrm{Kg}-\mathrm{cm}, \mathrm{in}-\mathrm{fb}\}$	$\begin{gathered} 0.78-1.27 \\ (9.0-13.0 .6 .9-11.3) \end{gathered}$	
Within 100° from the neutral position Average rotating torque		
Maximum torque deviation	$0.4(4,3.5)$	
Except above range Maximam fotaling torque	7．9（19．76）	
Maximum torque devition	$0.6(6,5.2)$	
Rack sliding force Under normal operating oil pressure Hange within $\pm 11.5 \mathrm{~mm}$ （ $\pm 0.453 \mathrm{in}$ ）from the neutral posilton	$\begin{aligned} & 206-265 \\ & (21-27 \\ & 46-80\} \end{aligned}$	$\begin{gathered} 201.0-250.1 \\ \{20.5-26.5 \\ 45.2-56.2\} \end{gathered}$
Except above fange	Not more than $39\{4,9\}$ beyond above value	
Stearing wheel turning force （Measured at one full turn from the neutral posithon， $\mathrm{N}\{\mathrm{kg}, \mathrm{lb})$	$39(4,9)$ of tess	
Fluid capacity（Approximate） ε（隹品	1.3 （1－1／8）	2.0 （1－3／4）
Oil pump maximum pressure kPa （baf， $\mathrm{kg}_{\mathrm{cm}}{ }^{2}$ ，psi）	$\begin{gathered} 7.649-8,238 \\ (78.5+82.4 \\ 78-84 \\ 1,109-1,194) \end{gathered}$	Main： $\begin{gathered} 7.649-8.298 \\ (76.5-82.4, \\ 78-84, \\ 1,109+1.194) \\ \text { Sub: } \\ 6.375-6.865 \\ (63.7-68.6 . \\ 65-70, \\ 924-995) \end{gathered}$

SECTION

CONTENTS

GENERAL SERVICING
(Including all clips \& fasteners) BF- 2
BODY END BF- 6
DOOR
(Including 'Power Window' and 'Power Door Lock') BF 10
INSTRUMENT PANEL BF-16
INTERIOR AND EXTERIOR
(In EXTERIOR, including 'Weatherstrips') BF-18
T-BAR ROOF BF-28
REAR AIR SPOILER BF-30
SEAT BF-32
WINDSHELD AND WINDOWS BF-35
MIRROR BF-40
BODY ALIGNMENT BF-42

When you read wiring ditagrams:

- Fead GI section, "HOW TO READ WIRING dIAGRAMS".
- See EL. section, "POWER SUPPLY ROUTING" for power distribution circuit.

[^13]
Precautions

- When removing or installing various parts, place a cloth or padding onto the vehicle body to prevent scratches.
- Handle trim, molding, instruments, grille, etc. carefully during removal or installation. Be careful not to soil or damage them.
- Apply sealing compound where necessary when installing parts.
- When applying sealing compound, be caretul that the sealing compound does not protrude from parts.
- When replacing any metal parts (for example body outer panel, members, etc.), be sure to take rust prevention measures.

Circuit Breaker Inspection

For example, when current is 30 A , the circuit is broken within 8 to 20 seconds.
Circuit breakers are used in the following systems.

- Power window \& power door lock
- Power seat

Clip and Fastener

- Clips and fasteners in BF section correspond to the following numbers and symbols.
- Replace any clips and/or tasteners which are damaged during removal or installation.
No.

Clip and Fastener (Cont'd)

No.	Symbol	Shape	Removal \& installation
(c105)	 SEF941B	 SBF142B	
(c106)	 SaF0898		Rempowal: Remove with flat-bieded screwdrtyer or plifita. $t \Rightarrow \boldsymbol{f}$
(c203	S8F318C	SeF319c	
(c103	SBF 103 B		
(cetoe)		SBF6538	Rempent:

GENERAL SERVICING
Clip and Fastener (Cont'd)
No.

NOTE

BODY END

Body Front End

- Hood adjustment: Adjust at hinge portion.
- Hood lock adjustment: After adjusting, check hood lock control operation. Apply a coat of grease to hood lock engaging mechanism.
- Hood opener: Do not attempt to bend cable forcibly.

Hood lock adjustment

- Adjust fock so that hood primary lock mesties at a position where moced is 1 to 1.5 mm (0.039 to 0.059 in) lower than tender.
- After hood lock adjustment, adjust blimper nubber.
- When securing hood lock, ensure it does not tilit. Siriker must be positioned at the centef of hood prmary lock.
- After adjustment, ensure that hood primary and secondary lock operate properfy.

Hood lock secondary dateh hooking length

O24-28
(2.1-2.7, 15 - 20)

Bumper nubber adjustment

- Adjust so thal hood is atigned with fender. [Bumper fubber free meight is approx. $15 \mathrm{~mm}\{0.59 \mathrm{inf} .1$

Body Front End (Cont'd)

- Remove front fender protectors.

Remove bolts (* in figure at left) securing reservoir tank, and slide reservair tank downward.

- Remove bolt securing bumper side stay.

Service Notice

- Be sure to enlarge hood hinge holes (hinge to hood side) less than 10 mm (0.39 in) dia. for easy hood adjustment at hood-hinge portion.
- Be sure to take rust prevention measures after enlargement of holes.

Body Rear End and Opener

- Back door adjustment: Adjust at hinge-body portion for proper back door fit.
- Back door lock system adjustment: Adjust lock \& striker so that they are in the center. After adjustment, check back door lock operation.
WARNING:
a. Be careful not to scratch back door stay when installing back door. A scratched stay may cause gas leakage.
b. The contents of the back door stay are under pressure. Do not take apant, puncture, apply heat or allow fire near th.
- Opener cable: do not attempt to bend cable using excessive force.
- After installation, make sure that trunk fid/back door and fuel filler lid open smoothly.

Body Rear End and Opener (Cont'd)

- After adjusting door or door lock. check door lock operation.

Striker adjustment

Power Window

WIRING DIAGRAM

SBF630F

POWER WINDOW AMP. INSPECTION

Power Door Lock

DRIVER SIOE DOOR LOCK SWITCH

- When removing instrument panel assembiy, remove defroster grille, combination meter, cluster lid and radio first.

Double-faced adhesive tape

* : instrument panel assembly mounting bolts

Interior

SIDE, LUGGAGE AND FLOOR TRIM

INTERIOR AND EXTERIOR

Interior (Cont'd)

MBFO28A

BACK DOOR TRIM

Exterior

Exterior (Cont'd)

(1) Hood front and rear seal

(2) (3) Cowi top seal and cowl top grille

(4) Windshield side molding

(5) Windshield upper molding

Mothod 2

1. Cut off seakant at glass end.
2. Clean the side on which panel was mounted,
3. Set modding fastener and apply sealant \& primer to body panel, and apply primer to molding.

4. Instail thoiding by aligning the moiding mark with vehicle center.
Be sure to install tightly 50 that therre is mo gap around the corner.

Exterior (Cont'd)

(6) Body side weatherstrip

(7) Door weatherstrip

Exterior (Cont'd)

(8) Door outside molding

(9) Door outer finisher

(1) T-bar roof sash and T-bar roof weatherstrip

These are part of the T-bar roof glass and cannot be removed. (Refer to T-BAR ROOF.)
If they are damaged, replace entire T-bar roof glass assembly.
(11) T-bar roof side weatherstrip

(12) Back door glass upper molding

Exterior (Cont'd)

(313) Back door glass side molding

(1) Back door weatherstrip

(b) Back door molding

(16) Front panel finisher

(17) Rear panel finisher

Exterior (Cont'd)

(18) Rear combination lamp

- Handle T-bar roof glass with care so not to damage it.
- Apply sealant to portions susceptible to water leakage if necessary.
- Side molding, sash, lock basement and glass of T-bar roof constitute one unit and cannot be disassembled.

BF-28

Thar roof hook

T-bar roof femafe lock adjustment

- When installing, make sure that there are not gaps or waves at ends of air spoiler.
- Betore installing spoller, clean and remove oil from surface where spoller will be mounted.

REAR AIR SPOILER

NOTE

- When removing or installing the seat trim, handle it carefully to keep it from becoming dirty and to avoid damage.

FRONT SEAT

For manuas seat

(1):N.m (kg-m, ftl)

B. For power seat

Remove mits from left and right guide faits. Seat witl then tof free to slide.

Push (trim-covered) Iock knob to rermove headrest.

REAR SEAT

M: Non \{kgm, telb $\}$

WINDSHIELD AND WINDOWS

Windshield

REMOVAL

After removing moldings, remove glass.

CAUTION:

Be careful not to scratch glass when removing.

INSTALLATION

- Use genuine Nissan Seakant kit or equivalent. Follow instructions provided with each kit.
- After installation, the vehicie should remain stationary for about 24 hours.
- Do not use seplant which is more than 12 momths past its production date.
- Do not leave cartridge unattended with iss cap open.
- Keep primers and seadant in a cool, diry place. Nissan recommends that they afe stored in a refrigerator.
- Be sura to install molding.

WARAING:
Keep heat or open flames awny as primers are flammabin.

(3)

Apply primer A.

saf719c

CAUTION:
Allow pimers to dry for 10 to $\mathbf{1 5}$ mintetes before procaeding to the next step.

Windshield (Cont'd)

Allow primers to dry for 10 to 15 minutes before proceeding to the next step.

CAUTION:
Windshild glass would be installed within 15 minutes of applying samant:
 after it is applined.

CAUTION:

For sealant drying period, refer to "Drying Time for Sealant".

CAUTION:
Molding must be installed securely so that it is in position and leaves no gap.

For details of moldings, refer to "Exterior".

WINDSHIELD AND WINDOWS

Side Window

Spacer and clip portion

Unit: mon (in)

Back Door WIndow

- Construction and removal/reinstallation method of back door window are basically the same as those of windshield.
- For sealant drying time, refer to "Drying Time for Sealant".
- For details of moldings, refer to "Exterior".

Unit: mm (in)

Drying Time for Sealant

Reference: Time required for sealant to dry to desired hardness.

Unit: days

Relative humidity			
$\%$	90	50	25
Temperature ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$			
$40(104)$	1.0	1.5	3.0
$25(77)$	1.5	2.5	5.0
$5(41)$	3.0	8.0	13.0

CAUTION:

Advise the user of the fact that vehicle should not be driven on rough roads or surfaces untll sealant has properly vulcanized.

Repairing Water Leaks for Windshield, Side Window and Back Door Window

Leaks can be repaired without removing and reinstalling glass.
If water is leaking between caulking material and body or between glass and caulking material. determine the extent of the leak by applying water while pushing glass outward.
To stop the leak, apply primer and then sealant to the leak point.

Atterwards, install molding securely.

Door Mirror

MIRROR

Door Mirror (Cont'd)

WIRING DIAGRAM

Without door mirror defogger

L.H. drive model

R.H. drive model

- All dimensions indicated in figures are actual ones.
- When a tram tracking gauge is used, adjust both pointers to equal length and check the pointers and gauge itself to make sure there is no free play.
- When a measuring tape is used, check to be sure there is no elongation, twisting or bending.
- Measurements should be taken at the center of the mounting holes.
- An asterisk (*) following the value at the measuring point indicates that the measuring point on the other side is symmetrically the same value.
- The coordinates of the measurement points are the distances measured from the standard line of " X ", ' Y^{\prime} ' and ' Z ".

MEASUREMENT

MEASUREMENT POINTS

Unit: mm

Underbody

MEASUREMENT

憬

级

SECTION

CONTENTS

AIR FLOW AND COMPONENT LAYOUT - Manual Air Conditioner HA- 2
DOOR CONTROL - Manual Air Conditioner HA- 5
MEATER ELECTRICAL CIRCUIT - Manual Air Conditioner HA- 7
PRECAUTIONS
PRECAUTIONS
HA- 8
HA- 8
PRECAUTIONS FOR REFRIGERANT CONNECTION
HA- 10
HA- 10
PREPARATION
PREPARATION
HA- 11
HA- 11
EVACUATING, CHARGING AND CHECKING
EVACUATING, CHARGING AND CHECKING
HA- 20
HA- 20
DESCRIPTION - Manual Air Conditioner
HA- 34
HA- 34
SERVICE PROCEDURES
SERVICE PROCEDURES HA- 38
A/C PERFORMANCE TEST
A/C PERFORMANCE TEST
HA- 44
HA- 44
COMPRESSOR OLL - For MJS 170 (HITACHI make)
HA 52
HA 52
COMPRESSOR --m Model MJS170 (HITACHI make) HA- 54
A/C ELECTRICAL CIRCUIT - Manual Air Conditioner
HA- 62
HA- 62
TROUBLE DIAGNOSES -- Manual Air Conditioner
TROUBLE DIAGNOSES -- Manual Air Conditioner
HA- 64
HA- 64
DESCRIPTION - Auto Alr Conditioner HA- 95
DOOR CONTROL - Auto Air Conditioner
HA-107
HA-107
A/C ELECTRICAL CIRCUIT - Auto Air Conditioner
A/C ELECTRICAL CIRCUIT - Auto Air Conditioner
HA- 110
HA- 110
TROUBLE DIAGNOSES - Auto Air Conditioner
HA-112
HA-112
SERVICE DATA AND SPECIFICATIONS (S.D.S.) HA-168

[^14]Air Flow

Component Layout

SHA6OSC

Control Rod Adjustment

MODE DOOR

1. Move side link by hand and hold mode door in VENT mode.
2. Install mode door motor on heater unit and connect it to harness.
3. Turn ignition switch to ACC.
4. Turn VENT switch ON.
5. Attach mode door rod to side link rod holder.
6. Check that when DEF position is selected, only DEF door is at full-open position, and when VENT position is selected, only VENT door is at full-open position.

INTAKE DOOR

1. Install intake door motor on intake unit.
2. Connect intake door motor harness connector.
3. Turn ignition switch to ACC.
4. Turn REC switch ON.
5. Install intake door lever.
6. Set intake door rod In REC position and fasten intake door rod to holder on intake door lever.
7. Check that intake door operates properly when REC switch is turned ON and OFF.

Control Rod Adjustment (Cont'd) AIR MIX DOOR

1. Connect harness to air mix door motor and set temperature control lever at full-cold position.
2. Set air mix doors I and II at full-cold position and fasten door rod.
3. Check that when temperature control lever is at full-cold, both doors are at full-cold position, and when temperature control lever is at full-hot, both doors are at full-hot position.

WATER COCK CONTROL CABLE

Clamp cable at full-close position when air mix doors I and fl are at full-cold position, and full-open position when air mix doors I and II are at full-hot position.

Wiring Diagram

R.H. DRIVE MODEL

PRECAUTIONS FOR THE HANDLING OF REFRIGERANT

- Always wear eye protection when working around the system.
- Always be careful that refrigerant does not come in contact with your skin.
- Keep refrigerant containers stored below $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$ and never drop from high places.
- Work in well-ventilated area because refrigerant gas evaporates quickly and breathing may become difficult due to the lack of oxygen.
- Keep refrigerant away from open flames because poisonous gas will be produced it it burns.
- Do not increase can temperature beyond $40^{\circ} \mathrm{C}$ ($104^{\circ} \mathrm{F}$) in charging.
- Do not heat refrigerant container with an open tiame. There is a danger that container will explode.
CAUTION:
- Do not use steam to clean surface of condenser or evaporator. Be sure to use cold water or compressed air.
- Compressed air must never be used to clean a dirty line.

- Do not use manifold gauge whose press point shape is different from that shown. Otherwise, insufficient evacuating may oceur.
- Do not over-fighten service valve cap.
- Do not allow refrigerant to rush out. Otherwise, compressor oil will be discharged along with refrigerant.

WARNING:

Gradually loosen discharge side hose titting, and remove it after remaining pressure has been released.

CAUTION:

When replacing or cleaning refrigerant cycle components, observe the following.

- Do not leave compressor on its side or upside down for more than 10 minutes, as compressor oil will enter low pressure chamber.
- When connecting tubes, always use a torque wrench.
- After disconnecting tubes, plug all openings immediately to prevens entrance of dirt and moisture.
- Always replace used O-rings.
- When connecting tube, apply compressor oll to portion shown in illustration. Be carelui not to apply oll to threaded portion.
- O-ring musi be closely attached to inflated portion of tube.
- After inserting tube into union umil O-ring is no longer visible, tighten nut to specified torque.
- After connecting line, conduct leak test and make sure that there is no leakage from connections. If a gas leaking point Is found, disconnect that line and replace the O-ring. Then tighten connections of seal seat to the specified torque.

PREPARATION

SPECIAL SERVICE TOOLS

MJS170 model

*: Special tool or commercial equivalent

Tool name Fool number	Description	
Cletch disc wrench KV99412302*		Removing shaft nut and clutch disc
Clutch dise puller KV994C5780	$\sqrt[s]{9}$	Removing clutch disc
Shaft handle sacket KV99412329*		Rotating compressor shaft
Shaft seal remover KV99403043		Fiemoving and Installing shaft seal
Shaft seal installer KV99403042		
Shaft seal pilot KV99403041*		Installing shaft seal
Allen scocket KV98412330*		Removing tear cover
Cylinder head remover KV994C5785*	0	Removing rear cylinder head

PREPARATION

Tool name Tool number	Description	
Oil separator kit KV994A9690	x^{8}	Separating oil from refrigerant
KV992C5079 Adapter connector A (1) KV992C5081 Adapter connector E (2) KV 992 C 5082		Using separate oil
Charge nozzle KV994C 1552		Charging refrigerant inte compressor
Blind cover set KV994C4548 Elind cover (1) KV994C4531 Gasket (2) KV994C4532 Gasket (Useless) (3) KV994C4533 Gasket (Useless) (4) KV994C4534 Boit (5) KV994C4559		Blind cover

Service Tools

RECOMMENDED TOOLS

Tool name	Description	
Manifold gauge (3-valve type)	RHA570B	Discharging, evacuating and charging refrigerant
Charging hose (Folin)		Discharging, evacuating and checking retrigerant
Charge valve		Discharging and chatging reirigerant
Adapter valve		Evacuating and charging
Thermometer	5	Checking temperature
Vacusm pump		Evacoating refrigerant
Joift adapter (T-type)	RHAB76B	Charging retrigerant

PREPARATION

Service Tools (Cont'd)
Tool name

For detalls of such handing methods, refer to the instruction Manual attached to each of the service tools.

Charging hose

1. Completely tighten the high pressure valve, low pressure valve and vacuum pump valve cocks of the gauge manifold.
2. Connect the charging hoses to the high and low pressure lines.
3. Connect the charging hose fitted with a valve core to the refrigerant canister.
4. Connect the charging hose to the vacuum pump.

The high and low pressure hoses are color coded to prevent wrong connection.

High pressure line hose	Red
Low pressure line hose	Yellow
Refrigerant canister hose	Blue or green (with valve core)
Vaculum purnp hose	Blue or green

CAUTION:

- Check each hose for cracks. If found, discard the hose.
- Do not use any hose if bulges are found.
- Check the rubber packing. If any deterioration or cracks are found, replace it with a new one.

PREPARATION

Service Tools (Cont'd)

Charge valve

The charge valve is used to charge the refrigerant into the system from the service canister through the gauge manifold.
Attach this valve to the head of a service canister by screwing it on. Then turn the handle clockwise to pierce the canister to allow the refrigerant to flow into the zefrigerating system.

CAUTION:

Check the packing for any sign of deterioration or cracks. If any abnormalities are found, replace it with a new one.

1. Turn the charge valve handle counterclockwise to fully retract the needle, and then attach the charge valve to the service canister. Note that leakage will occur if the charge valve is attached to the canister without retracting the needle.
2. Securely fit the charge valve to the head of the service canister by turning it. Then turn the handle slowly clockwise to make a hole in the canister with the needle.
3. Turn the handle counterclockwise to retract the needle, and the refrigerant will flow into the gauge manifold through the hole. To stop the flow of the refrigerant, turn the hande clockwise to close the hole with the needle.

Connecting T-joint adapter

The T-joint adapter is used to connect two refrigerant canisters so that air purging and the accompanying discharge of refrigerant into the atmosphere can be eliminated when recharging the refrigerant. If only one service canister is sufficient to charge the refrigeration system, do not use this T-joint adapter.

1. Turn the handle of each charge valve fully counterclockwise, and attach the valve to a retrigerant canister.
2. Connect the T-joint adapter to both charge valves so that two refrigerant canisters are connected as shown.
3. Connect the charging hose with valve core to the T-joint adapter. Connect the valve core end of the charging hose to the manifold gauge.
If more than three service canisters are needed for charging, use a cross joint adapter to connect four service canisters.

PREPARATION

Service Tools (Cont'd)

Installing the adepter valve

Install the adapter valve to each of the high pressure and low pressure service valves so that air purging from the charging hose can be omitted. This also ensures that refrigerant leakage upon disconnection of the hose can be prevented.

1. Before connecting the adapter valve to the on-vehicle service valve, turn the adapter valve handle fully counterclockwise to retract the pin.

CAUTION:

Check the packing for any sign of deterioration or cracks. If any abnormality is found, replace the packing with new.
2. Connect the charging hose to the adapter valve.

Turning the handle clockwise will cause the on-vehicle service valve pin to be pushed open by the adapter valve pin, thus opening the refrigerant passage.
Turning the handle counterclockwise will close the passage.
Before removing the adapter valve from the on-vehicle service valve, be sure to fully turn the handle counterclockwise to shut off the refrigerant passage.

Vacuum pump

The vaculum pump is used to purge air and moisture from the inside of the refrigeration system by evacuation, thereby ensuring proper functioning of the air conditioner system.
Check the vacuum pump to see that the vacuum pump capacity is greater than $-100.0 \mathrm{kPa}(-1,000 \mathrm{mbar},-750 \mathrm{mmHg},-29.53$ inHg).

Vacuum pump performance check procedure

1. Connect the vacuum gauge to the system.
2. Run the vacuum pump, and check to see that the needle pointers of the gauge manifold and vacuum gauge move smoothly, indicating a similar value.
3. After running the vacuum pump for two or three minutes, read the vacuum gauge. The measured value indicates the vacuum pump capacity.

Gas leak detector

The gas leak detector is used to check whether the refrigeration system is leaking. The detector is available in two types; halide torch or electrical. The features of these gas leak detectors are listed on the next page.

Service Tools (Cont'd)

Type		Detection ability	Features
Hatide torch		$200 \mathrm{~g} \mathrm{(7.05} \mathrm{oz)/year} \mathrm{(thin} \mathrm{green)}$	- Low price - Low sensitivity - Less safe because of the use of flame for detection
Electrical	Discharge type (Suction type)	3-50g (0.11-1.76 oz)/year	- Easy handing - Medium sensitivity - Each point needs two or more seconds for detection.
	Positive ion emission type (Suction type)	$2 \mathrm{~g} \mathrm{(0.07} \mathrm{oz)/year}$	- High sensitivity - High price - Warm-ip time is needed because a heater is incorporated.
Other simple checking method: Change in vacuum when evacuating		1 kg (2 lb)/month; if 13.3 kPa ($133 \mathrm{mbar}, 100 \mathrm{mmHg} .3 .94 \mathrm{inHg})$ change in vacuam is detected in 10 minutes.	- Can be used easily in retrigerant charging operation. - Detection ability is very low with vacuum gauge in gauge manifold.

Temperature gauge

Use to check the air conditioner performance. An etched stem type thermometer may be used. A hygrometer must also be used because the air conditioner performance depends on the humidity.

Scale

Measure the weight of the refrigerant to determine how much the refrigerant is charged.

PREPARATION

Service Tools (Cont'd)

Charging cylinder

The charging cylinder is used to correctly measure the amount of refrigerant to be charged.

Features

- With the charging cylinder, the operator can measure correctly the amount of refrigerant to be charged into the system.
- Change in the refrigerant volume due to a change in temperature and pressure can be supplemented, and this ensures correct charging of refrigerant.

CAUTIONS:

- Never attempt to carry the charging cylinder containing retrigerant.
- Do not put the charging cylinder in a hot place. If the temperature and pressure of the refrigerant in the cylinder increase, the safety valve will be pushed open and the refrigerant will be released into the atmosphere.
- Do not expose the cylinder to the direct sunlight.
- Do not over-charge the refrigerant so that it exceeds the maximum limit of the cyilinder.
- Do not charge the cylinder whth more refrigerant than is needed.

Refrigerant Charging Procedure

WORK PROCEDURE

EVACUATING, CHARGING AND CHECKING

Refrigerant Charging Procedure (Cont'd) SETTING OF SERVICE TOOLS
 Make sure that the service tools are set as indicated below and that no refrigerant is leaking.

Evacuation

Why evacuation is needed

When installing a car air conditioner, it is essential to completely remove air and water from the inside of the refrigeration system beforehand. This process is called evacuation. If the air conditioner is operated without completely removing these substances, the following abnormalities may result.

- Poor cooling due to reduction in the thermal exchange rate in condenser
- Moisture recirculating together with the refrigerant through the refrigeration system freezes at the port of the cold expansion valve. This impedes the normal refrigerant flow, thus lowering the cooling efficiency.
- The refrigerant reacts with water chemically, generating corrosive hydroctioric acid thus causing corrosion to the refrigeration system components.

CAUTION:

- When installing an alr conditioner in the vehicle, the pipes musf be connected as the linal stage of the operation. The seal caps of the pipes and other components must not be removed until their removal is required for connection.
- Betore installing any air conditioner component that has been stored in a cool location to a vehicle that has been exposed to the hot sun, leave the component as it is for some lime in a hot location with its seal cap unremoved. This step is necessary to prevent condensation of molsture inside the cold component.
- Thoroughly remove moisture from the religigeration system before charging the refrigerant.

Relation between bolling point of water and atmospheric pressure
Water boils at $100^{\circ} \mathrm{C}\left(212^{\circ} \mathrm{F}\right)$ under normal atmospheric pressure. The boiling point lowers with the atmospheric pressure. This characteristic of water is utilized to purge it from the system. The pressure inside the refrigeration system is lowered by a vacuum pump so that water can evaporate at a normal temperature. The water vapor is then discharged to the outside together with the air.

Evacuation (Cont'd)

Vacuum pump

The degree of evacuation greatly affects the cooling capacity of the air conditioner and the service life of the refrigeration system components. However, use of a vacuum pump having insufficient capacity results in prolonged evacuation. It is necessary to use a vacuum pump with a sufficientiy large capacity and also to mairtain the pump to ensure its original pumping capacity.

EVACUATION PROCEDURE

1. Completely tighten the fow pressure and high pressure adapter valves.
Tightening of the valves opens the service canister valve.
2. Open the high and low pressure valves and vacuum pump valve of the gauge manifold.
3. Run the vacuum pump.
4. Perform evacuation for more than five minutes to stabilize the vacuum inside the system. Check to ensure that the low pressure gauge indicates -98.6 to $-101.3 \mathrm{kPa}(-986$ to $-1,013$ mbar, -740 to $-760 \mathrm{mmHg},-29.13$ to $-29.92 \mathrm{inHg})$.
5. Shut off the high and low pressure valves and vacuum pump valve of the gauge manifold.

Evacuation (Cont'd)

CHECKING AIRTIGHTNESS

1. Shut off the nigh and low pressure valves and vacuum pump valve of the gauge manifold, and leave the system as it is for 5 to 10 minutes.
2. Make sure that the needle of the low pressure gauge will not move back toward the atmospheric pressure side (gauge pressure 0).
If any reverse movement is noted, it indicates poor system airtightness. Service the system until airtightness is complete. If pressure changes approx. 13.3 kPa ($133 \mathrm{mbar}, 100 \mathrm{mmHg}$, $3.94 \mathrm{inHg})$ in 10 minutes, the refrigerant in the system will be exhausted in about one month.

MAINTENANCE

If inadequate airtightness is detected, check and service the following portions:

Leak from pipe joints	Leak from gauge marsifold
- Contaminated, damaged, or de-	Malfunctioning hose
formed O-ring	Emproper instaitation of gauge
- No il appled when connecting	- Malfunctioning valve
pipe	- Malfunctioning packing
- Excessive of insutficient tighten-	
ing of pipe joint	

EVACUATION

If no abnormality is found during the airtightness check, perform evacuation again for more than 20 minutes.

1. Run the vacuum pump.
2. Open the high and low pressure valve and vacuum pump valve of the gauge manifold.
3. Evacuate for more than 20 minutes.
4. Close the high and low pressure valves and vacuum pump valve of the gauge manifold.

Charging Refrigerant

Procedure

PRELININARY CHARGING PROCEDURE

This operation is performed to check the refrigerant leakage and to protect the compressor.

1. Tum the charge valve handle to open a hole in the service canister to allow the reffigerant to flow through the gauge manifold.
2. Open the low pressure vaive of the gauge manifold, and charge the refrigerant into the system from the low pres* sure side.
3. After charging approx. $200 \mathrm{~g}(7.05 \mathrm{oz})$ of refrigerant, shut off the low pressure valve.

CAUTION:

- The refrigerant charging operation musl be performed affer shuting off the engine. If the compressor is operated with an insufficient amount of refrigerant, the compressor may seize up due to a lack of return of the compressor oil.
- Do not shake nor hold the refrigerant canister upside down.

Charging Refrigerant (Cont'd)

PRELIMINARY CHECK FOR REFRIGERANT LEAKS

1. Make sure that the gauge manifold valve is closed.
2. Check for refrigerant leak from each connector in the system using the leak detector.
At this point, the pressure in the system is not high. Only large amounts of refrigerant leak due to loose pipe joints, etc. can be detected.

CHARGING REFRIGERANT

1. Make sure that the valves of the gauge manifold are ciosed.
2. Start the engine, and run the compressor.
3. Slowly open the low pressure valve of the gauge manifold.
4. Charge the specified amount of refrigerant.

The charged amount of refrigerant can be determined by subtracting the weight of the canister measured after charging trom its weight measured before charging.
WARNING:
Never attempt to open the high pressure valve while the engine is running. If opened, the pressure in the refrigerant canister will increase, thus causing an explosion.

CHARGING REFRIGERANT WITHOUT USING T-JOINT ADAPTER

If the service canister used for charging is empty, replace the canister with a new one, and proceed as follows:

1. Make sure by shaking the canister that no refrigerant is left inside.
2. Shut off all the valves of the gauge manifold.
3. Disconnect the charge valve from the emptied canister, and attach it to a new service canister.
4. Run the vacuum pump, and open the vacuum valve (center) of the gauge manifold to purge air from the inside of the hose.
5. Run the vacuum pump for approx. 30 seconds.
6. Shut off the vacuum valve (center) and stop the vacumm pump.
7. Unseal the new canister, and open the charge valve.
8. Open the low pressure valve to charge the refrigerant into the system.

Charging Refrigerant - Charging cylinder WORK PROCEDURE

Install the charging cylinder correctly to the vehicle.
Refer to "SETTING OF SERVICE TOOLS" in "Refrigerant Charging Procedure".

PREL.IMINARY CHARGING OF REFRIGERANT-1

1. Make sure that the infet and outlet valves of the charging cylinder are closed.
2. Slowly open the outlet valve of a refrigerant container [13.6 $\mathrm{kg}(30 \mathrm{lb})]$.
3. Siowly open the inlet valve of the charging cylinder.

The refrigerant will flow into the sight glass of the charging cylinder as the valve is opened.

Charging Refrigerant

4. Slowly open the upper vent valve to release pressure from the charging cylinder. While doing so, continue charging until the required amount of refrigerant is reached.
The retrigerant volume changes with the temperature and pressure. It is necessary to charge refrigerant with a littie more than the required amount (indicated on the sight glass).
Refer to the CAUTION label attached on the vehicle, or to the Service Manual.
5. Close the inlet valve and upper vent valve of the charging cylinder.

6. Turn on the heater switch (the charging cylinder is provided with a heater.)
The refrigerant charging time can be reduced by heating the refrigerani to increase its pressure. In this case, do not allow the pressure in the cylinder to rise higher than $1,030 \mathrm{kPa}$ (10.30 bar, $10.5 \mathrm{~kg} / \mathrm{cm}^{2}, 150 \mathrm{psi}$). (If pressure rises above this level, turn of the heater.)
The pressure in the charging cyllnder can be measured by the upper pressure gauge.

EVACUATION AND AIRTIGHTNESS CHECK

Reter to "EVACUATION" and "CHECKING AIRTIGHTNESS" in "Evacuation".

SETTING OF FLOW METER

1. Rotate the charging cylinder main body until the scale for R12 is at the correct position on the sight glass.
2. Read the charging cylinder pressure gauge.
3. Rotate the charging cylinder so that the scale of the charging cylinder agrees with the pressure value indicated on the pressure gauge.
4. Open the outlet valve of the charging cylinder.

Charging Refrigerant - Charging cylinder (Cont'd)

CALCULATING CHARGING AMOUNT OF REFRIGERANT

1. Record the amount of refrigerant in the sight glass before charging.
2. Subtract the required amount of refrigerant (charge quantity specified for the vehicle) from the amount of refrigerant recorded in step 1. Charge refrigerant into the system until the remaining value equals to the value indicated on the sight glass

Example:

Level in sight glass: 3 lb 8 oz
Charge specification (from Service Manual) 2.0-2.4 lb.
Calculate charge quantity into lb and oz as follows: $1 \mathrm{lb}=16 \mathrm{oz}$, and $0.1 \mathrm{lb}=1.6 \mathrm{oz}$, so that $2.0 \mathrm{lb}=32 \mathrm{oz}, 2.4 \mathrm{lb}=32+(4 \mathrm{x}$ $1.6)=32+6.4=38.4$, round off to 38 . Therefore our charge quantity will be between 32 and 38 oz , or 2 lb 0 oz to 2 lb 6 oz . Subtract 2 lb 6 oz from the level in the sight glass (3 lb 8 oz) $=$ 1 lb 2 oz .
This will be our ending point.

PRELIMINARY CHARGING OF REFRIGERANT-2

1. Slowly open the high pressure side valve of the manifold gauge to charge refrigerant from the high pressure side.
2. Close the high pressure valve after charging approx. 200 g (7.05 oz) refrigerant.

CAUTION:
The refrigerant in the charging cylinder is kept in the liquid state, so the refrigerant should be charged from high pressure side. Do not start the engine with the high pressure valve kept open.

PRELIMINARY CHECK FOR REFRIGERANT LEAKS
 Reter to "PRELIMINARY CHECK FOR REFRIGERANT LEAKS" in "Charging Refrigerant".

CHARGING REFRIGERANT

1. Slowly open the high pressure vaive of the manifold gauge, and charge the calculated amount of refrigerant in "CALCULATING CHARGING AMOUNT OF REFRIGERANT'.

CAUTION:

The refrigerant in the charging cylinder is kept in the liquid state, so the reirigerant should be charged from high pressure side. Do not start the engine with the high pressure valve kept open.
2. Close the high pressure valve of the manifold gauge.
3. Make sure that the calculated amount of refrigerant is in the sight glass.
4. Close the charging cylinder outlet valve.
5. Turn off the heater if it is on (when using heater equipped type).

Inspection for Refrigerant Leaks

WORK PROCEDURE

RHA693E
To facilitate inspection tor refrigerant leaks, establish the following conditions:

- Start the engine.
- Run the air conditioner.
- Set the blower fan control to MAX.
- Set the temperature control to FULL COLD.
- Run the refrigerant system for more than 5 minutes after setting the above-mentioned conditions (to circulate the refrigerant through the system).

Refrigerant leaks should be checked immediately after stopping the engine, beginning with the high pressure Inne, using a gas leak tester. This is because the pressure in the high pressure line drops gradually after the refrigerant circulation stops while the pressure in the low pressure line rises gradually as shown in the graph. Leaks can be detected easily when pressure is high.

Confirmation of Amount of Charged Refrigerant

The amount of refrigerant charged into the system can be observed through the sight glass by watching the flow of the refrigerant and by reading the high pressure and low pressure manifold gauges under the following conditions:

CONDITIONS

- Door window: Open
- A/C switch: ON (Manual Air Conditioner)
- Auto switch: ON (Auto Air Conditioner)
- TEMP. setting: Max. COLD
(Manual Air Conditioner)
10 (Auto Air Conditioner)
- FAN speed: $\quad 4$ (Manual Air Conditioner)

HI (Auto Air Conditioner)

- Check sight glass after a lapse of about five minutes.

WORK PROCEDURE

Confirmation of Amount of Charged Refrigerant (Cont'd)

Check item	Appropriate	Refrigerant is insufficient	Almost no refrigerant	Overcharged. or alr in system
Temperature of high and low pressure pipes	High pressure side is hot while tow pressure side is cold.	High pressure side is warm and low pressure side is somewhat cold.	No diference is felt between high and low pressure sides.	High pressure side is very hot.
Fiow of refrigerant viewed through sight glass	Mostly transparent. Occasionally some bubbies are seen when engine rpm is increased or decreased.	Bubbles are always flowing. Refrigerant is cloudy	Nothirg is visible.	If overcharged, no butbles are seen. If there is air in the system, large bubbles are seen.
Pressure	Normal high pfessure: $1,373-1,765 \mathrm{kPa}$ (13.7-17.7 bar, 14. 1a kg/cm? 199 - 256 psi$)$ Normal low pressure: 147 - 294 kPa (1.47-2.94 bat, $1.5-3 \mathrm{~kg} / \mathrm{em}^{2}$. 21-43 psis	Both high and low pressure valtes are insufticient.	High pressure value is very smail.	Both high and low pressure values are excessive.
Action to take	Air bubties may be gener aled when the receiver drier stralner 摘 elogged, or when the expansion valve is opened excessivedy.	Add refrigerant atter checking for leaks.	Check the refrigerant systern.	Stop the compressor and extract extesslve refrigerant. it air is found, perform evacuation, then charge the specitied amount of refrigerant.

a. The bubbles seen through the sight glass are influenced by the ambient temperature. Since the bubbles are hard to see in comparatively low temperatures below $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$, it is possible that a slightly larger amount of refrigerant would be filled if supplied according to the sight glass.
When the STV (for the auto air conditioning system) activates at an ambient temperature of less than $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$, bubbles can sometime be seen through the sight glass. However, the amount ol refrigerant is correct if the following conditions are met:
(1) The air vent temperature is less than $7^{\circ} \mathrm{C}$ ($45^{\circ} \mathrm{F}$) as per the performance chart (HA28).
(2) Bubbles disappear under the following conditions:

- Door windows:	Closed
- Auto switch:	ON
- TEMP. setting:	40
FAN speed:	HH
- REC. switch:	ON

Check sight glass after a lapse of about five minutes.
Recheck the amount when it exceeds $20^{\circ} \mathrm{C}$ ($68^{\circ} \mathrm{F}$). At higher temperatures the bubbles are easy to see.
b. When the screen in the receiver drier is clogged, the bubbles will appear even if the amount of refrigerant is normal. In this case, the outlet side pipe of the receiver drier becomes considerably cold.

Recovery Procedure

REMOVAL OF REFRIGERANT CHARGING DEVICE

1. Completely loosen the adapter valves of the low pressure and high pressure lines.
The inner valve of the adapter valve will prevent the refrigerant from leaking out.
2. Remove both the high-pressure and low-pressure side adapter valves from the on-vehicle service valve.
If adapter valve is not used for charging, proceed as follows to minimize the refrigerant discharge into the atmosphere.
3. Loosen the nut of the low pressure charging hose while pressing it against the service valve to prevent refrigerant leakage.
4. After loosening the nut, quickly remove the charge valve from the service valve.
5. Wait until the high pressure gauge indication drops to below 981 kPa ($9.8 \mathrm{bar}, 10 \mathrm{~kg} / \mathrm{cm}^{2}, 142 \mathrm{psi}$), then similarly disconnect the high pressure charging hose.

DISPOSAL OF RESIDUAL REFRIGERANT

Securely shut off each of the charge valves, adapter valves and manifold gauge valves to prevent the residual refrigerant from leaking out. Keep these valves in a safe iocation for the next charging.
The amount of refrigerant remaining in a service canister can be estimated from the Table shown here. It is recommended that a label be attached indicating the remaining amount in the canlster.

Control Switches

SWITCHES AND THEIR CONTROL FUNCTIONS

		Indicator illuminates		Air outlet	Intak ${ }^{\text {ctair }}$	Compresser
		A/C	-			
A/C		0				ON* 1
Mode				VENT	*3	*1*4
				B / L	* 5	*144
				FOOT	* 5	*1*4
				F/O	${ }^{5} 5$	ON* 1
	4:7			DEF	FRE	* 7 - 4
			0		R $\mathrm{EF}^{*} 2$	ON* 1

"1: Compressor is operazed by thermo control winp. and E.C.c.S. control unit.
"2: Depencting on mode switch pesition.
4: When went mode is selected, HEC switch function is as in the following chart:
4: Dapending on A / C witch position.
*5: Depending on REC switeh position.

	REC				
			ON		OFF
A/C	ON	REC	REC/FRE		
SW	OFF	REC	FRE		

Specifications

AIR MIX DOOR MOTOR

The air mix door motor is attached to the heater unit. It rotates, opening the air mix door to the position set by the temperature control lever.
Motor rotation is conveyed through shafts and linkages. The air mix door position is fed back to the control amplifier by the Potentio Balance Resistor (P.B.R.) built into the air mix door motor.

Air mix door mator operation

1	2	Air mix door operation	Direction of tever movement
Θ	Θ	COLD \rightarrow HOT	Clockwise (Toward passenger comportment)
Θ	Θ	STOP	STOP
Θ	\oplus	HOT \rightarrow COLD	Counterclockwise (Toward engine compartment)

Charscteristics of P.E.R.

DESCRIPTION - Manual Air Conditioner

Specifications (Cont'd)

MODE DOOR MOTOR

When a mode switch is selected, the position switch built into it reads the corresponding mode to determine the direction of motor rotation. As soon as the desired mode is set, the position switch stops the motor.

Specifications (Cont'd)

INTAKE DOOR MOTOR

The intake door motor is installed on the side portion of the intake unit. Using a rod and link it opens and closes the intake door. When the REC switch is ON (OFF), the ground line of the intake door motor is switched from terminal to (2) to (2)). This causes the motor to start because the position switch contacts buill into it are now set to the current flow position.
The contacts turn along with the motor. When they reach the non-current flow position, the motor will stop. The motor always turns in the same direction. (FRE \rightarrow REC \rightarrow REC/FREC)

Acceleration Cut System

This system is controlled by the E.C.C.S. control unit. When the engine is heavily overloaded, the compressor is turned off for several seconds to reduce overloading.

Water Cock Control System

The water cock is connected to the air mix doors with a cable. When the air mix doors are at the full-cold position, the water cock is fully closed, and when the air mix doors are at the full-hot position, the water cock is fully opened.

Refrigeration Cycle

REFRIGERANT FLOW

The refrigerant flows in the standard pattern, that is, through the compressor, the condenser, the receiver drier, through the evaporator, and back to the compressor.
Refrigerant evaporation through the evaporator coil is controlled by an externatly equalized expansion valve, located inside the evaporator case.

FREEZE PROTECTION (For manual air conditioner)

The compressor cycles on and off to maintain the evaporator temperature within a specified range. When the evaporator coil temperature falls below a specified point, the thermo control amplifier interrupts the compressor operation. When the evaporator coil temperature rises above the specified point, the thermo control amplifier allows compressor operation.

FREEZE PROTECTION (For auto air conditioner)

When the A / C is switched on, the compressor runs continuously, and the evaporator pressure is controlled by a suction throttle valve (S.T.V.) to prevent freeze up.

REFRIGERANT SYSTEM PROTECTION

Low-pressure switch

The refrigerant system is protected against excessively low pressures by the low-pressure switch, located on the receiver drier. If the system pressure falls below the specifications, the low-pressure switch opens to interrupt compressor operation.

Fusible plug

Opens at temperature above $105^{\circ} \mathrm{C}\left(221^{\circ} \mathrm{F}\right)$, thereby discharging refrigerant to the atmosphere. If this plug is melted and opened, check the refrigerant line and replace the receiver drier.

Pressure relief valve

The refrigerant system is also protected by a pressure relief valve, located on the end of the high pressure flexible hose near the compressor. When the pressure of refrigerant in the system increases to an abnormal level [more than $3,727 \mathrm{kPa}\left(37.3 \mathrm{bar}, 38 \mathrm{~kg} / \mathrm{cm}^{2}, 540 \mathrm{psi}\right)$], the release port on the pressure relief valve automatically opens and releases refrigerant into the atmosphere.

Refrigerant Lines

FOR AUSTRALIA

Sl: Nom (kg-m, ft-lb)

Refrigerant Lines (Cont'd)

L.H.D. MODEL FOR EUROPE

SERVICE PROCEDURES

Refrigerant Lines (Cont'd)

R.H.D. MODEL FOR EUROPE

M/ $\mathrm{N} \cdot \mathrm{ml}(\mathrm{kg}-\mathrm{m}, \mathrm{tt}-\mathrm{m})$

Compressor Mounting

Belt Tension

- Refer to section MA.

Fast Idle Control Device (F.I.C.D.)

- Refer to section EF \& EC.

A/C PERFORMANCE TEST

Performance Chart

TEST CONDITION - For Manual Air Conditioner

Testing must be performed as follows:
Vehicle location: indoors or in the shade (in a well ventilated place)
Doors: Closed
Door windows: Open
Hood: Open
TEMP. lever position: Max. COLD
Mode switch: \boldsymbol{F} (Ventilation) set
REC switch: (Recirculation) set
FAN lever position: Max. position
Engine speed: $1,500 \mathrm{rpm}$
Time required before starting testing after air conditioner starts operating: More than 10 minutes

TEST READING

For Australia

Recirculating-to-discharge air temperature table

Inside air (Recifcutating air) at blower assembly fifet		Discharge air temperature at center vent\|lator${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$
Relative humidity \%	Air temperature ${ }^{\circ} \mathrm{C}$ (${ }^{5} \mathrm{~F}$)	
50-60	20 (68)	6.5-7.2 (44-45)
	25 (77)	11.0-12.0 (52-54)
	30 (86)	15.6-16.8 (60-62)
	35 (95)	20.3-21.6 (69-71)
60-70	20 (68)	7.2-7.9 (45-46)
	25 (77)	12.0-12.9 (54-55)
	30 (86)	16.8-17.9 (62-64)
	35 (95)	21.6-22.9 (71-73)

Amblent air temperatureto-compressar pressure lable

Ambient air		High-pressure (Discharge side) kFa (bar, $\left.\mathrm{kg} / \mathrm{cm}^{2}{ }^{2} \mathrm{psi}\right)$	Low-pressure (Suction side) kPa (bar, $\mathrm{kg} / \mathrm{cm}^{2}$, psi)
Relative humidity $\%$	Air temperature ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$		
50×70	20 (68)	$\begin{gathered} 1,079-1,324(10.70-13.24 \\ 11.0-13.5,156-192) \end{gathered}$	$\begin{gathered} 105.9 \times 129.5(1.059-1.295 \\ 1.08-1.32 .15 .4-18.8) \end{gathered}$
	25 (77)	$\begin{gathered} 1,196-7,461(11.96-14.61, \\ 12.2-14.9,173-212) \end{gathered}$	$\begin{gathered} 146.1-178.5(1.461-1.785 \\ 1.49-1.82 .21 .2-25.9) \end{gathered}$
	30 (86)	$\begin{gathered} 1.373-1.687(13.73-16.87 \\ 14.0-17.2,199-245) \end{gathered}$	$\begin{gathered} 187.3-228.5(1.873-2.285 \\ 1.91-2.33,27.2-33.1) \end{gathered}$
	35 (95)	$\begin{gathered} 1,589-7,942(15.89-19.02 \\ 16.2-19.8,230-282) \end{gathered}$	$\begin{gathered} 229.5-280.5(2.295-2.905 \\ 2.34-2.86,33.3-40.7) \end{gathered}$
	40 (104)	$\begin{gathered} 1,804-2,197(18.04-21.97 \\ 18.4-22.4,262-319) \end{gathered}$	$\begin{gathered} 269.7-329.5(2.697-3.295 \\ 2.75-3.36 .39 .1-47.8) \end{gathered}$
	45 (1i3)	$\begin{gathered} \$, 991-2.442(19.91-24.42 . \\ 20.3-24.9,289-354) \end{gathered}$	$\begin{gathered} 308.9-377.6(3.089-3.776, \\ 3.15-3.85,44.8-54.7) \end{gathered}$

ARC PERFORMANCE TEST

Performance Chart (Cont'd)

TEST CONDITION - For Auto Air Conditioner
Testing must be performed as follows:
Vehicle location: Indoors or in the shade (in a well ventilated place)
Doors: Closed
Door windows: Open
Hood: Open

E
Set up ACTIVE -TEST with CONSULT and set each component as follows:
Mode door: VENT
Intake door: REC
Air mix door: Full-cold
Compressor: ON
Blower motor: 12 V
Set up sell-diagnosis STEP 2 and set code No. " 66 ".

A/C PERFORMANCE TEST

Performance Chart (Cont'd)

VG30DETT engine L.H.D. model

Recirculating-to-discharge air temperature table

Inside air (Recirculating ais) at blower assembly intet		Discharge air temperature at center ventizator${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$
Relative humidity $\%$	Air temperature ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	
50-60	20 (68)	$7.0-7.8(45-46)$
	25 (77)	11.6-12.7(53-55)
	30 (86)	16.5-17.7 (62-64)
	35 (95)	21.3-22.7 (70-73)
	40 (104)	26.2-27.8(79-82)
60.70	20 (68)	$7.8-8.7(46-48)$
	25 (77)	12.7-13.8(55-57)
	30 (86)	17.7-18.9 (64-66)
	35 (95)	22.7-24.1(73-75)
	40 (104)	27.8-29.6 (82-85)

Ambient air temperature-to-compressor pressure table

Ambient àir		High-pressure (Discharge side) kPa (bar, $\left.\mathrm{kg} / \mathrm{cm}^{2}, \mathrm{psi}\right)$	Low-pressure (Saction side) kPa (bar, kg/cm², psi)
Relative humidity $\%$	Air temperature ${ }^{\circ} \mathrm{C}$ (${ }^{\circ} \mathrm{F}$)		
50-70	20 (68)	$\begin{gathered} 785-961(7.85-9.61 \\ 8.0-9.8,114-139) \end{gathered}$	$\begin{gathered} 68.6-103.0(0.686-1.030 \\ 0.70-1.05,10.0-14.9) \end{gathered}$
	25 (77)	$\begin{gathered} 912-1,108(9.12-11.08, \\ 9.3-11.3,132 \times 761) \end{gathered}$	$\begin{gathered} 118.7-150.0(1.187-1.500 \\ 1.21-1.53 .17 .2-21.8) \end{gathered}$
	30 (86)	$\begin{gathered} 1,128-1,383(11.28-13.83, \\ 11.5-14.1,164-204) \end{gathered}$	$\begin{gathered} 167.7-205.0(1.677 \times 2.050 \\ 1.71-2.09,24.3-29.7) \end{gathered}$
	35 (95)	$\begin{gathered} 1,353-1,657(13.53-16.57 \\ 13.8-16.9,196-240) \end{gathered}$	$\begin{gathered} 213.8-260.9(2.138-2.609 \\ 2.18 \times 2.66,37.0-37.8) \end{gathered}$
	40 (104)	$\begin{gathered} 1,579-1,922(15.79 \times 19.22 \\ 16.1-19.6,229-279) \end{gathered}$	$\begin{gathered} 258.9-315.8(2.589-3.158 \\ 2.64-3.22 .37 .5-45.8) \end{gathered}$
	45 (113)	$\begin{gathered} 1.795-2,207(77.95-22.07 \\ 18.3-22.5 .260 \times 320\} \end{gathered}$	$\begin{gathered} 304.0-372.7(3.040-3.727 \\ 3.10-3.80 .44 .1-54.0) \end{gathered}$

HA-46

A/C PERFORMANCE TEST

Performance Chart (Cont'd)

VG30DETT ENGINE R.H.D. MODEL
Recirculating-to-discharge air temperature table

Inside air (Recirculating air) at blower assembly inlet		Discharge air temperature at center ventifator${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$
Relative humidity $\%$	Air temperature ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	
$50-80$	20 (68)	7.0-7.8(45-46)
	25 (77)	10.2-11.4 (50-53)
	30 (86)	15.2-16.5 (59-62)
	35 (95)	20.4-21.5 (69-71)
	40 (104)	25.4-26.7 (78-80)
60-70	20 (68)	$7.8-8.6(46-47)$
	25 (77)	$11.4+12.4(53-54)$
	30 (86)	18.5-17.6 (62-64)
	35 (95)	21.5 - $22.8(71-73)$
	40 (104)	26.7-28.0 (80-82)

Ambient air temperatare-to-compressor pressure table

Ambient air		High-pressure (Dischasge side) kPa (bar, $\mathrm{kg} / \mathrm{cm}^{2}, \mathrm{psi}$)	Low-pressure (Suction side) kPa (bar, $\left.\mathrm{kg} / \mathrm{cm}^{2}, \mathrm{psi}\right)$
Relative humidity $\%$	Air temperature ${ }^{\circ} \mathrm{C}\left(f^{\circ} \mathrm{F}\right)$		
$50 \sim 70$	20 (68)	$\begin{gathered} 1,098-1,353(10.98-13.53, \\ 11.2-13.8,159-196) \\ \hline \end{gathered}$	$\begin{gathered} 122.6-152.0(1.226-1.520 \\ 1.25-1.55,17.8 \cdot 22.0) \end{gathered}$
	25 (77)	$\begin{gathered} 1,265-1,559(12.65-15.59 \\ 12.9+15.9,183-226) \end{gathered}$	$\begin{gathered} 156.9-194.2(1.559-1.942, \\ 1.60-1.98,22.8-28.2) \end{gathered}$
	30 (96)	$\begin{gathered} 1,451-1,785(14.51 \times 17.85 \\ 14.8-18.2,210-259) \end{gathered}$	$\begin{gathered} 185.4-226.5(1.854-2.265 \\ 1.89-2.31,26.9-32.8) \end{gathered}$
	35 (95)	$\begin{gathered} 1,608-1,981(16.08-19.81, \\ 16.4-20.2,233-287) \end{gathered}$	$\begin{gathered} 220.7+269.7(2.207-2.697, \\ 2.25-2.75,32.0-39.1) \end{gathered}$
	40 (104)	$\begin{gathered} 1,765 \cdot 2,158(17.65-21.58 \\ 18.0-22.0,256 \cdot 313) \end{gathered}$	$\begin{gathered} 247.1-313.8(2.471-3.138, \\ 2.52-3.20,35.8-45.5) \end{gathered}$
	45 (113)	$\begin{gathered} 1,942-2,373(19.42-23.73 \\ 19.8-24.2,282-344) \end{gathered}$	$\begin{gathered} 274.6-362.9\{2.746-3.629 \\ 2.80-3.70,39.8-52.6\} \end{gathered}$

Performance Test Diagnoses

Characteristics revealed by the manitold gauge readings for the air conditioning system are shown in the following table.
For how to do the performance test, refer to the item "Performance Chart".

In the following table, the portion marked on each gauge scale indicates the range which shows that the alr conditioning system is in good order. This range is described in Performance Chart.

Condition		Probable cause	Corrective action
instufficient nefrigerant charge			
AC352A	Insufticient cooling. Bubbles appear in sight glass.	Refrigerant is tow, or feaking slightliy.	1. Leak test. 2. Repair leak. 3. Charge system. Evacuate, as necessary, and recharge system.
ALMOST NO REFRIGERANT			
AC353A	No cooling action. A lot of bubbles or something like mist appears in sight glass.	Serious refrigerant leak.	Stop compressor immediately. 1. Leak test. 2. Discharge system. 3. Repair leak(s). 4. Replace receiver drier if necessary. 5. Check oil level. 6. Evacuate and recharge system.
MALFUNCTIONING EXPANSION VAEVE			
AC354A	Slight cooling Sweat of frosting on expansion valve inlet.	Expansion valve restricts refrigerant flow. - Expansion valve is clogged. - Exparsion valve is inoperative. Valve stuck closed. Thermal bulb has lost charge.	If valve intet reveals sweat or trost: 1. Discharge system. 2. Remove value and clean it. Replace it if necessary. 3. Evacuate system. 4. Charge system. If valve does not operate: 1. Discharge system. 2. Replace valve. 3. Evacuate and charge system.

A/C PERFORMANCE TEST
Performance Test Diagnoses (Cont'd)

Condition		Probable cause	Corrective action
	Insufficient cooling. Sweat on suction line. No cooling. Sweat or frosting on suction line.	Expansion valve allows too much retrigerant through evaporator. Malfunctionir,y expansion valve.	Check valve for operation. If suction side does not show a pressure decrease, replace vaive. 1. Discharge systern. 2. Replace valve. 3. Evacuate and charge system.
MALFUNCTIONING SUCTION THAOTTLE VALVE			
	Insufficient cooling. Frosted evaporator.	Suction throtte valve is incperative.	1. Discharge system. 2. Replace valve. 3. Evacuate and charge systern.
	Insufficient cooling.	Suction throttie valve restricts retrigerant flow.	1. Discharge system. 2. Replace valve. 3. Evacuate and charge system.

A/C PERFORMANCE TEST

Performance Test Diagnoses (Cont'd)

Condition		Probable cause	Corrective action
MALFUNCTIONING CONDENSER			
ACSEfA	No cooling action: engine may overheat. Bubbles appear in sight glass of drier. Suction tine is very hot.	Usually a malfunctioning condenser.	- Check fan belt and fluid coupling - Check radiator tan motor. - Check condenser tor dirt accumulation. - Check engine cooling system for overheatifg. - Check for zefrigerant overcharģing. it presture remains high in *pite of all above actions laken, remove and inspect the condenser for possolite oil clcoging.
HIGH-PRESSURE LINE BLOCKED			
AC362A	Insufficient cooling. Frosted high-pressure liquid line.	Drier clogged, or restriction in high-pressure line.	1. Discharge system. 2. Remove receiver drier or stratner and replace it. 3. Evactate and charge system.
MALFUNCTIONING COMPRESSOR			
AC363A	Insufficient cooling.	Internal problem in compressor, or damaged gasket and valve.	1: Discharge system. 2. Remove and check compressor. 3. Fepair or replace compressor. 4. Check oil level. 5. Replace receiver drier. 6. Evacuate and charge system.

A/C PERFORMANCE TEST

Performance Test Diagnoses (Cont'd)

Condition		Probable cause	Corrective action
TOO MUCH ORL IN SYSTEM (Excesslive)			
AC364A	Insufficient cooling.	Too much pil circulates with refrigerant, causing the cooling capacity of the system to be reduced.	Refer to COMPRESSOA OIL for correcting ois level.
AIR IN SYSTEM			
$A C 382 A$	insufficient cooling. Sight giass shows occasional bubbles.	Air mixed with refrigerant in system.	1. Discharge system. 2. Replace receiver drier. 3. Evactate and charge systerm.
MOISTURE AN SYSTEM			
	Atter short operation, suction side may show vacuum pressure reading. Ouring this cond \ddagger tion, discharge air wil be warm. As a waming of this, reading vibrates around 39 kPa 10.39 bar , $0.4 \mathrm{~kg}_{\left.\mathrm{g} / \mathrm{cm}^{2}, 6 \mathrm{psi}\right)}$.	Dfier is saturated with moisture. Moisture has frozen in expansion valve. Refrigerant flow is restricted.	1. Discharge system. 2. Peplace receiver drier (fwice if necessary). 3. Evacuate system completely. (Repeat 30 minutes evacuating three times.) 4. Recharge system.

Checking and Adjusting

The oil used to lubricate the compressor is circulating with the retrigerant.
Whenever replacing any component of the system or a large amount of gas leakage occurs, add oil to maintain the original amount of oil.

Total amount of oil in the system: $150 \mathrm{ml}(5.3 \mathrm{mmp} \mathrm{if} \mathrm{oz})$

1. Connect oll separator KV994A9690 between compressor discharge side and condenser.
2. Evacuate and charge the system.
3. Operate compressor at engine idling with air conditioner set for maximum cooling and thigh fan speed.
4. Stop compressor operation after 10 minutes.

CAUTION:
Never allow engine speed to exceed idiling speed.
Do not continue compressor operation for more than 10 minutes.
5. Disconnect oil separator and connect retrigerant line to original positions.
6. Disconnect low flexible hose from compressor suction valve.
7. Add new oil from compressor suction port.

Amount of oll to be added:
120 ml (4.2 fmp il oz)

- About $\mathbf{3 0} \mathbf{m l}$ (1.1 Imp fioz) of oll remains unremoved in the system.

8. After adding oil, rotate compressor clutch by hand 5 to 10 turns.
9. Connect refrigerant line and evacuate and charge system.
10. Conduct leak test and performance test.
11. Gradually loosen drain cap of oll separator to release residual pressure. Remove cap and drain oil.
12. To prevent formation of rust and intrusion of moisture or dust, perform the following before placing oll separator kit into storage.
1) Cap each opening of flexible hose and double union securely.
2) Cap oit separator, evacuate it from service valve, and charge refrigerant.
When oil contains chips or other foreign material. After alr condilioner system has been tiushed with refrigerant replace receiver drier. Then pour in $150 \mathrm{ml}(5.3 \mathrm{lmp} \mathrm{fl} \mathrm{oz})$ of oil into alr conditioner system.

IF OIL SEPARATOR IS NOT AVAIL.ABLE

Add oil accordance with the table below.

Condition		Amount of oil to be added $\mathrm{ml}(\mathrm{mp}$ 自 OZ$)$
Replacement of compressor		1. Remove all oil from new and old compressors.* 2. Charge new compressor with the same amount of oif as was to the old compressor.
Replacement of front cooling unit		70 (2.5)
Peplacement of rear cooling anit		15 (0.5)
Replazement of cool box		10 (0.4)
Replacement of receiver drier (liquid tank)		10 (0.4)
Replacement of condenser	There is no sign of ol leakage from condenser.	10 (0.4)
	There are evidences of a large amount of oil leakage from condenser.	60 (2.1)
Heplacement of fexible hose or pipe	There is no sign of oil leakage.	Oil need not be added.
	There are evidences of a large amount of oll leakage.	60 (2.1)
Gas leakage	There is no sign of oil leakage.	Oil need not be added.
	There are evidences of a targe amount of dil leakage.	60 (2.1)

\because Remove compressor oil as follows.

1. With the compressor upside down, completely drain the oll through the suction port (irom the embossed letter " s " mark side).
2. When the oll sfops flowing out, rotate the clutch hub two or three times to completely drain the ofl.

Precautions

- Plug all openings to prevent moisture and foreign matter from entering.
- Do not leave compressor on its side or upside down for more than 10 minutes.
- When replacing or repairing compressor, check compressor oil level in system.
- When replacing with a new compressor, drain specified oll from new compressor. Reter to COMPRESSOR OlL.
- Be sure there is no oil or dift on frictional surface of ciutch disc and puliey.
- When replacing compressor clutch, be careful not to scratch shaft or bend pulley.
- When replacing compressor clutch assembly, do not forget BREAK-IN OPERATION.
- When storing a compressor, be sure to fili it with refrigerant to prevent rust formation. Add refrigerant at the lowpressure side and purge air at the high-pressure side, while rotating shaft by hand.
- When installing shaft seal, O-ring and gaskets, apply compressor oil sparingly to the contact surface. Do not reuse them.
- After replacement or repairs, conduct a Leak Test.

SHABHOC
HA-55

SHA7C3B

Compressor Clutch

REMOVAL

- When removing shaft nut, hold clutch disc with clutch oisc wrench.
- Using clutch disc puller, clutch disc can be removed easily

INSPECTION

Clutch disc

If the contact surface shows signs of damage due to excessive heat, the drive plate and pulley should be replaced.

Pulley

Check the appearance of the pulley assembly. If the contact surface of the pulley shows signs of excessive grooving due to slippage, both the palley and drive piate shoutd be replaced. The contact surfaces of the pulley assembly should be cleaned with a suitable solvent before reinstallation.

Coil

Check coil for loose connection or cracked insulation.

COMPRESSOR - Model MJS170 (HITACHI make)

Shaft Seal

REMOVAL

- Before disassembling, be sure to measure the amount of oil. After assembling, charge with the same amount of new oil.
- With Tool KV99403043, remove shaft seal by hooking the pulling case.

INSPECTION

- Check the outer seal rubber for scars and hardening.

Shaft Seal (Cont'd)

- Check the seal lips for scars and wear.

INSTALLATION

- When installing shaft seal;

1) Cap shaft seal pilot to the top end of compressor shaft.
2) Using shaft seal installer, insert shaft seal.

Cylinder Head, Valve and Cylinder REMOVAL (Rear)

- Using Allen socket, remove rear cover.
- Using cylinder head remover, remove rear cylinder head.

INSPECTION

- Check suction vaive plate and cylinder head for sings of damage.

Cylinder Head, Valve and Cylinder (Cont'd)
 REMOVAL (Front)

- With the front facing downward, support compressor shell. Using a plastic mallet, tap at the rear end of the shell flange, driving shell straight downward.
- Detach front cover from cylinder assembly.

INSPECTION

- Check suction valve plate and cylinder head for signs of damage.
- Check to make sure contact surfaces of cylinders, compressor shaft and compressor shell are free from any sign of scratches.

INSTALLATION

1. Front cover must be installed so that the cutout portions of front cover and shell are aligned.
For this purpose, install front cover on cylinder head so that angle between threaded hole in front cover and low pressure side refrigerant passage in cylinder head is about 60°.

Cylinder Head, Valve and Cylinder (Cont'd)
2. When installing shell on cylinder, adjust position of shell so that suction inlet of shell opens in the same direction as suction slit of cylinder visible in suction inlet by removing suction valve.

- When installing suction cover to rear cover, align knock pin.
- Using Allen socket, install rear cover.

Leak Test

- Charge refrigerant from suction side and evacuate air from discharge side. Then conduct leak test.

Wiring Diagram

Contents
How to Perform Trouble Diagnoses for Quick and Accurate Repair HA-65
Symptom Chart HA-66
Preliminary Check HA-67
PRELIMINARY CHECK 1
(Intake door is not set at "FRESH" in DEF mode) HA-67
PRELIMINARY CHECK 2
(A/C does not blow cold air) HA-68
PRELIMINARY CHECK 3
(Magnet clutch does not engage in FOOT \& DEF or DEF mode) HA-69
PRELIMINARY CHECK 4
(Air outlet does not change) HA-70
PRELIMINARY CHECK 5
(Noise) HA-71
PRELIMINARY CHECK 6 (Insufficient heating) HA-72
Main Power Supply and Ground Circult check HA-73
Circull Diagram for Quick Pinpoint Check HA-74
Harness Layout for A/C system HA. 75
Diagnostic Procedure 1
(Blower motor does not rotate) HA-77
Diagnostic Procedure 2
(Air outlet does not change) HA-79
Diagnostic Procedure 3
(Intake door does not change in VENT, BIL or FOOT modes) HA-81
Diagnostic Procedure 4
(Magnet clutch does not engage when A/C switch and fan switch are ON) HA-82
Diagnostic Procedure 5
(llumination or control panel indicators do not come on) HA-86
Diagnostic Procedure 6
(Temperature of air outlet does not change) HA-90
Electrical Component Inspection HA-92

How to Perform Trouble Diagnoses for Quick and Accurate Repair

WORK FLOW

Symptom Chart

dIAGNOSTIC TABLE

PROCEPURE	Fretiminary check						Di\＃\＃gnostlc Procedure						Main power supply and Ground circuit check		Etectrical components inspection												
REFERENGE PAGE	$\stackrel{\vdots}{\mathbf{y}}$	$\left\lvert\, \begin{aligned} & \text { 㤟 } \\ & \text { 要 } \end{aligned}\right.$	$\begin{aligned} & \text { 哭 } \\ & \stackrel{8}{4} \end{aligned}$	$\begin{gathered} \text { 은 } \\ \text { 立 } \end{gathered}$	$\begin{aligned} & \text { N } \\ & \frac{2}{\mathbf{2}} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { 空 } \end{aligned}$		$\begin{aligned} & \text { 倸 } \\ & \frac{0}{2} \\ & \hline \end{aligned}$	$\begin{gathered} \text { 晋 } \\ \stackrel{y}{c} \end{gathered}$		$\begin{aligned} & \text { 总 } \\ & \frac{d i d y}{4} \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & \vdots \\ & 3 \end{aligned}$		｜	$\begin{gathered} \text { N } \\ \text { d } \\ \hline 1 \end{gathered}$	忍	$\begin{aligned} & \text { Nㅝㅇ } \\ & \text { 就 } \end{aligned}$	$\begin{aligned} & \text { \$ } \\ & \stackrel{4}{4} \end{aligned}$	$\begin{aligned} & \mathbf{Z} \\ & \stackrel{\vdots}{\mathbf{x}} \end{aligned}$	$\begin{aligned} & 8 \\ & \mathbf{8} \\ & \hline \mathbf{2} \end{aligned}$	$\begin{aligned} & \bar{D} \\ & \frac{4}{4} \end{aligned}$	$\begin{aligned} & \text { 怱 } \\ & \mathbf{\alpha} \end{aligned}$	1	F	\｜	1	1
SYMPTOM			Poeliminary checik 3											$\begin{aligned} & \text { 愚 } \\ & \text { Hizu } \end{aligned}$		$\begin{aligned} & \mathbf{0} \\ & \mathbf{0} \\ & \mathbf{E} \\ & \mathbf{y} \\ & 0 \\ & 0 . \end{aligned}$			Low pressure switth			IHEHEAO COAFBOL AMP．		$\begin{aligned} & \text { 言 } \\ & \frac{0}{4} \\ & 8 \\ & 8 \\ & 0 \\ & 0 \\ & \frac{2}{2} \end{aligned}$		$\begin{aligned} & \text { 右 } \\ & \text { D } \\ & 0 \\ & 0 \\ & \vdots \\ & \hline \end{aligned}$	
A／C does not biow cold alr．		1					\bigcirc			0		\bigcirc	0	\bigcirc		\bigcirc	0		0	\bigcirc						O	σ
Insutacient hating						3	\bigcirc					C	\bigcirc			\bigcirc	O						0				O
Blower motor doeps not ro－ tate．		(1)					2						\bigcirc	\bigcirc		0	C										
Aly outler dobs not change．				1				，					Q	0							0			\bigcirc			0
Intake daor does not change in VENT，BL or FOOF modes．													0	0											0		\bigcirc
Intake door is not set at ＂FAESH＂in Duty mode．									0				\bigcirc	\bigcirc											\bigcirc		\bigcirc
Magnet cluch dobs not $\begin{aligned} & \text { n }\end{aligned}$ gage witen A／C switch and tan switch are OA．		i								2									\bigcirc	\bigcirc		0				O	
Magnet clutch dees not en－ gage In FOOT \＆DEF or DEF mode．			(2)							0				\bigcirc	O			\bigcirc	0	\bigcirc						0	\bigcirc
Iflumination or indicators on switch parnet do not come on．											θ			0													－
Noise																											

Preliminary Check

PRELIMINARY CHECK 1
 Intake door is not set at "FRESH" in DEF mode.

PRELIMINARY CHECK 2

A/C does not blow cold air.

Preliminary Check (Cont'd)

PRELIMINARY CHECK 3

Magnet ciutch does not engage in FOOT \& DEF or DEF modes.

- Perform PRELIMINARY CHECK 2 and 4 before refering to the following flow chart.

PRELIMINARY CHECK 4

Air outlet does not change.

Preliminary Check (Cont'd)

PRELIMINARY CHECK 5

Noise

TROUBLE DIAGNOSES - Manual Air Conditioner

Preliminary Check (Cont'd)

PRELIMINARY CHECK 6

Insufficient heating

Main Power Supply and Ground Circuit Check
 POWER SUPPLY CIRCUIT CHECK FOR A/C SYSTEM

Check power supply circuit for air conditioning system.
Refer to "POWER SUPPLY ROUTING" in section EL and A/C ELECTRICAL CIRCUIT.

CONTROL AMP. REMOVAL

1. Remove driver side instrument lower lid.
2. Remove vent duct.
3. Remove control amp. with harness connected.

CONTROL ANP. CHECK

1. Disconnect control amp. harness connector.
2. Connect voltmeter from harness side.
3. Measure voltage across terminal No. (13) or No. (14) and body ground.

Voltmeter terminal		Voltage
\oplus	¢	
(3)	Body ground	Approximately. 12 V
(4)		

Check body ground circuit for control amp. with ignition switch OFF.

1. Disconnect control amp, harness connector.
2. Connect ohmmeter from harness side.
3. Check continuity between terminal No. (23) and body ground.

Circuit Diagram for Quick Pinpolnt Check

Harness Layout for A/C System

ENGINE COMPARTMENT

	INCIDENT	Flow chart No.
1	Fant fails to fotate	[1]
2	Fan does not retzte at speed 1.	[2]
3	Fan doas not rotate at spead 2.	3
4	Fan does not fotate at speed 3 .	4
5	Fan does not rotate at speed 4.	[5]

B

(.) Blower motor harness connector (4)

Fesistor harness

Dlagnostic Procedure 1

SYMPTOM: Blower motor does not rotate.

- Perform PRELIMINARY CHECK 2 before referring to the following flow chart.
Check if blower motor rotates
properly at each fan speed.
Conduct checks as per fitow
chart.

A
CHECK POWER SUPPLY FOA BLOWER MOTOR.
Discomect blower motor har\#ess connector.
Do approximately 12 volts exist between blower motor harness terminal No. (46) and body ground?

Check circuit continuity between blower motor hamess terminal

Reconnect blower motor harness connector.

Do approximately 12 volts exist between resistor harness terminal No. (45) and body ground?

Check circuit continsity between blower motor harness terminal No. (47) and resistor terminal No. (45).
(Go to next page.)

Note:

If the result is N.G. atter checking circult continulty, repair harness or comnector.

Diagnostic Procedure 1 (Cont'd)

CHECKK FAN SWITCH C Do normal volts exist between switch unit harness connector terminal?

flow chart No. (Fan SW position)	Temminal No.		Normal voltage (Approx.)
	\oplus	Θ	
2 (1)	(1)	(1)	2V
3 (2)			3 V
(4) (3)			4V
5 (4)			5 V
G		O.K.	

CHECK CONTROL AMP. HARNESS TERMINAL VOLTAGE.
Do approximately 12 volts or 0 volts exist between control amp. harness terminals No. (4), (15). (16) or (11) and body ground?

Flow chert No.	Terminal No.	Fan SW operation	
		ON	OFF
2	(14)	0 V	Approx. 12V
[3]	(17)	ov	Abjorox. 12V
(4)	(19)	0 V	Approx. 12V
[5]	(15)	ov	Approx. 12V
O.K			
Replace blower motor.			

A Switch unit hafness
connector (A59)

SHA323C

D

Control amp. hafters confector (ni3)

SHA32GC

E

Diagnostic Procedure 2

SYMPTOM: Alr outlet does not change.

- Perform PRELIMINARY CHECK 4 and Main Power Supply and Ground Circuit Check before referring to the following A llow chart.

CHECK MODE DOOR MOTOR POSITION SWITCH. Measure voltage between switch unit harness connector terminals No. (9) and (1).				$\xrightarrow{\text { N.G. }}$	Disconnect switch unit farness connector.
				\mathbb{B}	
Mode switch	Terminal No.		Voltase (Approx.)		h
	(${ }^{\text {(}}$	θ			connector terminal No. (3) and
VENT			5 V		

Measure voltage between control amp. harness comnector termifzals No. (9) and (1).

Mode syitch	Terminal No.		Voltage (Approx.)
	(4)	θ	
VENT			5V
B/L			$4 V$
FOOT	(3)	(1)	3 V
F/D			2V
DEF			OV

CHECK BODY GROUND CIRCUIT FOR MODE DOOR MOTOA. Does continuity exist between mode door motor harness connector terminal No. and body ground?

(Go to next page.)

Diagnostic Procedure 2 (Cont'd)

A Intake door mator
harness connector (449)

E

SHA331C

Diagnostic Procedure 3

SYMPTOM: Intake door does not change in VENT, B/L, or FOOT modes.

- Pertorm Preliminary check 1, and Main Power Supply and Ground Circult Check before referring to the following flow chart.
A
CHECK POWER SUPPLY FOR INTAKE DOOR MOTOR.
Disconnect intake door motor harness confector.
Do approximately 12 volts exist between intake door motor harness terminal No. and body ground?

Select VENT mode and check the voltage between intake door motor harness terminats No. (21). (21) (22) and body ground.

Disconnect control panel connector.
 and (1).

HEC switch	Continuity
between terminal	
No. (12) and (11)	
Switch pressed	Yes
Switch fres	No

Check circuit continuity between
 Repair harness or connector. control panel harness terminal No. (12) (11) and control amp. harness terminal No. (12) (11).

Replace control amp.

Diagnostic Procedure 4

SYMPTOM: Magnet clutch does not engage with A/C switch and fan switch are ON.

- Pertorm PRELIMNARY CHECK 2 betore referring to the following flow chart.

A
CHECK POWER SUPPLY FOR COMPRESSOR.
Disconnect compressor harness connector.
Do approximately 12 volts exist between compressor harness connector terminal No. (4) and
 body ground?

CHECK A/C RELAY OPERATION Do approximately 12 volts exist between A/C relay harness con* nector terminal No. (4) and body ground?

Check circuit continuity between A/C relay harness connecto: terminal No. (48) and compressor harness connector terminal No. (4i)

E

Note:
If the result is N.G. alter checking circtit contintify, repair harness of connector.

Diagnostic Procedure 4 (Cont'd)

F

Check circult continuity between A/C relay harness connector terminal No. (5) and lowpressure switch harness connector termiza No. (4).

Diagnostic Procedure 4 (Cont'd)

CHECK POWER SUPPLY FOR TEFRMO CONTAOL AMP.
Do approximately 12 volts exist between thermo control amp. harness connector terminal No. 440 and body ground?

I.

Is the voltage between thermo control amp. harness connector terminal No. (4) and body ground approximately ov?

Check contlinuity between thermo control amp. harfess connector terminal No. 41 and control amp. harness connector terminal No. (14).

CHECK A/C SWITCH OF SWITCH UNIT.
Check the voltage between switch unit harness connector terminals No. (6) and (1)

(Go to next page.)

Note:

It the result is N.G. after checking circult continuity, repair harness or connector.

Diagnostic Procedure 4 (Cont'd)

Diagnostic Procedure 5

SYMPTOM: Hlumination or control panel indicators do not come оп.

- Perform Main Power Supply and Ground Circuit Check before referring to the following flow chart.
rurn ignition switch and lighting switch ON.

CHECK ILIUMINATION AND INDICATORS.

- Turn A / C, REC and fan ON.
- Rotary VENT, B/L, FOOT, F/D and DEF switches in order.
- Check for incidents and follow the repairing methods as shown.

INCIDENT			How to repair
12.	A/C	REC	
Control panel			
x	0	0	Go to DIAGNOSTIC PROCEDURE 5-1.
\bigcirc	x	\bigcirc	Go to DIAGNOSTIC PROCEDURE 5-2.
\bigcirc	0	x	Go to DIAGNOSTIC PROCEDURE 5-3.
\bigcirc	x	X	Go to DIAGNOSTIC PROCEDURE 5.4.

O: Hlumination or indicator comes on.
X : Illumination or indicator dees not come on.

8

SHAS52C

Diagnostic Procedure 5 (Cont'd) diagnostic procedure 5-1

 harness terminal No. (I) and body ground?
o.k.

CHECK TIME CONTROL SYSTEM.
Refer to TIMAE CONTROL SYSFEM in EL section.

A

Ohnmetor thocid show some fisistance when
 how open circuit when tont hawd are rewerred.

SMA354C

Diagnostic Procedure 5 (Cont'd)
DIAGNOSTIC PROCEDURE 5-2

DIAGNOSTIC PROCEDURE 5-3

Diagnostic Procedure 5 (Cont'd)
 DIAGNOSTIC PROCEDURE 5-4

A
Control panel harness
connector
connector (HD)

SHA5z 1 C
B. Control amp. harness connector

SHA522C
Controf amp. hanness connectors (43)

SHA523C

E

Diagnostic Procedure 6

SYMPTOM: Temperature of air outlet does not change. A
CHECK TEMPERATURE CON. TROL LEVER.
Measure voltage between control panel harness connector ferminals No. (8) and (1).

temp. control把ver	Terrminal No.		Volrage tяoprox.;
	(\dagger	Θ	
Full her	\% 8	(1)	5 V
Fulf cold			OV

Terminat No.		Contaminy
Controt atus.	Mif mix obor meter	
3	36	
\%	(ii:	
3	37	Yos
36	3	
il	36\%	

D IOK
CHECK FOR CONTROL AMP. OUTPUT.
Check if 12 volts exist between control amp. harness connector terminals No. 30 and (3) when temp. control lever is moved.

trol amp. harness connector terminals No. (8) and (1).

control lever	Terming Mo.		Voltage (qpplox.'
	(${ }^{(5)}$	Θ	
Full hat			5 V
Futt erols	(8)	(1)	OV

C	$\mathrm{O} . \mathrm{K}$.

Check continulty between each terminal of control amp. and air
$\xrightarrow{\text { N.G. Repair harness or connector. }}$
(4) (Go to next page.)

Diagnostic Procedure 6 (Cont'd)

Electrical Components Inspection

FAN SWITCH
Check resistance between terminals at each switch position.

Switch position	Resistance between terminals No. (3) and (16) (Approx. Ω)
OFF	710
1	1.940
2	460
3	270
4	0

BLOWER MOTOR

Confirm smooth rotation of the blower motor.

- Ensure that there are no foreign particies inside the intake unit.

BLOWER RESISTOR

Check continuity between terminals.

LOW-PRESSURE SWITCH

High-pressure side mine pressure kPa (bar, $\mathrm{kg} / \mathrm{cm}^{2}, \mathrm{psi}$)	Operation	Continuly
196 (9.96, 2.0. 28)	Turn OFF	Does not exist
206 (2.06, 2.1.30)	Turn ON	Exist

RELAY

Check circuit continuity between terminals by supplying 12 volts to coil side terminal of relay.

Electrical Components Inspection (Cont'd)

 A/C SWITCHCheck continuity between terminals at each switch position.

Switch condition	Terminal No.		Continuity
Whle A/C switch is pusned	(6)	(ii)	Yes
While REC switch is pushed	(3)	(ii)	Yes

TROUBLE DIAGNOSES - Manual Air Conditioner

Electrical Components Inspection (Cont'd)

 MODE SWITCHCheck resistance between terminals at each switch position.

Switch position	Resistance between terminals No. (9) and No. (3) (Ω)
VENT	0
B C	270
FOOT	460
FOOT/DEF	1.140
DEF	710

THERMO CONTROL AMP.

1. Run engine and operate A / C system.
2. Connect the voltmeter from harness side.
3. Check thermo control amp. operation shown in the table.

Evaporator outset air semperature ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	Thermo control ampm apmeration	Voltage (Approx.)
Decreasing to $3.0(37)$	Turn OFF	12 V
Increasing to $4.5(40)$	Turn ON	0 V

Features

OUTLET AIR TEMPERATURE CONTROL (Air mix door control)

When the desired temperature is set on the control panel, the automatic temperature control system determines both the head and foot target temperatures, as well as target upper (VENT and DEF) and lower (FOOT) outlet air temperatures. This computation is accomplished in relation to the desired temperature, and outside conditions (ambient temperature and sunload). The automatic temperature control system then controls the air mix door position so that the outlet air temperatures meet target* outlet air temperatures.
A summary of the automatic temperature control system is as foliows:

1. The upper and lower air temperatures are independently controlled to provide a comfortable ride.
2. Optimum outlet air temperatures can be set to the passenger's preference.
3. Outfet air temperature feedback control through duct sensors permits a "potentiometerless" air mix door design. It requires no adjustment, increases service life and improves performance reliability.

FAN SPEED CONTROL

The A.T.C. system continuously regulates fan speed according to the difference between the target temperature and the temperatures detected at the upper and lower in-vehicle sensors. The greater the difference between the temperatures the higher the blower speed. If the cabin sunload or ambient temperature is high, fan speed will be increased.

INTAKE DOOR CONTROL

The A.T.C. system adjusts the intake door position once every sixty seconds. The system is programmed to take in outside air as much as possible.

OUTLET DOOR CONTROL

The A.T.C. system controls distribution of air through the VENT, DEF and FOOT outlets based on the cabin sunfoad, ambient temperature and the set temperature.

COMPRESSOR MAGNET CLUTCH CONTROL

The A.T.C. system automatically shuts off the compressor at temperatures lower than $0^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right)$.

SELF-DIAGNOSTIC SYSTEM

The A.T.C. system contains an on-board diagnostic system which can be used to check the A.T.C. system sensors and motors and any trouble data stored in the memory.
Pushing the "AUTO" and "OFF" switches at the same time for more than 5 seconds will give the self-diagnostic mode. There are 4 kinds of self-diagnostic systems (STEP 1 to STEP 4). Each step can be accessed by pushing the "AUTO" switch. The functions of each step are as follows:

- STEP 1 - Monitor diagnosis
- STEP 2 - Actuator test
- STEP 3-Change of difterence between upper and lower target temperature
- STEP 4 - Readout of trouble data memory

*: Target temperature

When a temperature for the cabin is set using the TEMP. SET switch, the A.T.C. system calculates an initial target temperature based on information from the various A.T.C. system sensors. This target temperature is continuously updated to bring the cabin temperature to the set temperature in the most comfortable way possible for the occupants. (The program for this was made after careful study of comfort levels related to car interiors).

Switch Functions on Control Unit

AUTO SWITCH	
INTAKE POOR POSITION	AUTOMATIC CONTROE
OUTLET DOOR POSITION	
AIR MIX DOOR POSITION	
FAN SPEED	
COMPRESSOR	ON loutside air temperazure abcuve $0^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right)$:
REMARKS	Fan spead can be set at "HI" or "等".

OFF SWITCH	
INTAKE DOOR POSITION	OUTSIDE AIR
OUTLET DOOR POSITION	AUTOMATIC CONTROL
AIR MIX DOOR POSITION	
FAN SPEED	OFF
COMPRESSOR	OFF
FEMARKS	REC switch can be set.

Specifications

AUTO AMPLIFIER

The auto amplifier has a built-in microcomputer which processes information from the A.T.C. system sensors. Signais are sent from the auto amplifier to activate the A.T.C. system depending upon the information sent by these sensors and the set temperature selected on the switch panel.
The A.T.C. system's selt-dlagnostic capabilities are built into the auto amplitier.

Specifications (Cont'd)

AIR MIX DOOR I and II MOTORS

Component and related parts

- Auto amplifier
- Air mix door motors
- In-vehicle sensors (upper and lower)
- Duct sensors (vent, floor, defroster)
- Ambient sensor
- sunload sensor

Operation of air mix door I and II motors

Air mix door 1

AIr mix door 11

42 (4)	(43) Air mix door I and H operation	Direction of lever movement	
Θ	Θ	COLD \rightarrow HOT	*Clockwise
Θ	Θ	STOP	STOP
Θ	Θ	HOT \rightarrow COLD	${ }^{*}$ Counterclockwise

*:

"Difection of lever
movement" is as wiewed from artow P

System operation

The air mix door motors are attached to the bottom of the heater unit. The motors rotate, moving a lever system which varies the air mix door position to heat or cool the inlet air. Outlet air temperature is measured by the duct sensors, signals from which are sent to the auto amplifier which uses them to modify the air mix door position to achieve the current target temperature.

- It takes about 1 minute to stabilize duct air temperature.
- When ambient temperature is below $5^{\circ} \mathrm{C}\left(41^{\circ} \mathrm{F}\right)$ or above $60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$, air mix door position is fixed.

Specifications (Cont'd)

MODE DOOR MOTOR

Component and related parts

- Auto amplifier
- Mode door motor with potential ballast resister (P.B.R.)
- Lower in-vehicle sensor
- Ambient sensor
- Suntoad sensor

Mode door motor operation

Mode door motor operation

70		48
47	χ	73

(47)	(9)	Mode door operation	Direction of side link rotation
Θ	\oplus	VENT \rightarrow DEF	Clockwise
Θ	Θ	STOP	STOP
Θ	Θ	DEF \rightarrow VENT	Comterciockwise

System operation

The mode door motor is attached to the heater unit. The motor operates a cam assembly which moves the air outlet doors. The auto amplifier controls air distribution to the VENT, DEF and FOOT outlets. Outlet door position is conveyed to the auto amplifier by the P.B.R. built into the mode door motor.
The aúto amplifier computes air outlet conditions according to ambient temperature, sef temperature and sunload. When thermal loads are great, the air outtet computation is additionally influenced by the foot area temperature. The air outlet positions are smoothly adjusted in response to changes in ambient temperatures.
When the set temperature is decreased or when the sunload is increased, the air flow volume from the vent outlets is inm creased.

Specifications (Cont'd)

INTAKE DOOR MOTOR

Component and related parts

- Auto amplifier
- Intake door motor
- Upper in-vehicle sensor
- Vent duct sensor
- Ambient sensor
- Sunload sensor

Intake door operation

System operation

The intake door motor is attached to the air intake unit. Intake door position is controlied approximately once every minute, according to the difference between target and actual vent air temperatures. When the actual outlet air temperature is higher than the target vent air temperature, the intake door will gradually shift toward the recirculation-air side. When the outlet air temperature reaches the target outlet air temperature, the intake door will gradually shift toward the fresh air side. However, when the ambient temperature is lower than $20^{\circ} \mathrm{C}$ $\left(68^{\circ} \mathrm{F}\right), 100 \%$ fresh air is taken is regardless of outlet air temperatures.
When the compressor is "OFF' the auto amplitier sets the intake door at the "FRESH" position except when the "RECIRC" switch is "ON".

SUNLOAD SENSOR

The sunload sensor is located on the right defroster grille. it detects sunload entering through the windshield by means of a photo diode and converts it into a current value which is then input into the auto amplifier.

DESCRIPTION - Auto Air Conditioner

Specifications (Cont'd)

FAN CONTROL AMPLIFIER
The fan control amplifier is located on the cooling unit. It amplifies the base current flowing from the auto amplifier to change the blower speed.

System Operation
 SWITCH PANEL

System operation

Except for illumination lamp terminals (12) and , the switch panel is operated by signals emitted from the control unit. There are three categories of signals.

1) Power and ground signals
2) Indicators (VFD and LED) and buzzer control signals
3) Switch input and output signals

The control unit always sends three different signals to the switch panel on three lines (4), (3), and (6). For example, when the "Auto" switch is pushed, signal "A" returns to the control unit on line No. (1). And when the "Econ" switch is pushed, signal " B " returns to the control unit on line No. (3).
Similarly for the other switches; the control unit recognizes which signal returns on which line, and then identifies which switch is pushed.

System Operation (Cont'd) AMBIENT TEMPERATURE INPUT PROCESS

For A.T.C. system operation an accurate ambient sensor signal is necessary. The auto amplifier contains a circuit to ensure accurate measurement of increases in ambient temperature. Sudden increase in temperature of $16^{\circ} \mathrm{C}\left(61^{\circ} \mathrm{F}\right)$ or more, which may be detected after encountering heavy traffic after a period of high speed cruising, are processed through a delay circuit. The delay circuit processes any temperature increase in increments of $0.06^{\circ} \mathrm{C}\left(0.11^{\circ} \mathrm{F}\right)$ every 12 seconds and, in this way, the A.T.C. system is protected from any sudden changes in ambient sensor signal due to low air flow around the sensor.
Temperature decreases are not processed through the time delay circuit.

Example:

In the case of a signal stop after high-speed cruising, the ambient temperature will rises suddenly.
The ambient temperature input process functions at this time to prevent unpleasant air conditioning system changes.

SUNLOAD INPUT PROCESS

The sunload input circuit in the auto amplifier also features a time delay to prevent abrupt A.T.C. system changes. This feature operates under rapid increases and decreases in sunioad.

Example:

When entering a tunnel the sunload will change suddenly. The sunload input process system functions at this time to prevent unpleasant air conditioning system changes.

System Operation (Cont'd)
 SENSOR INPUT PROCESS

A fixed resistor is built into the auto amplifier. 12V DC is converted to 5 V DC by the constant voltage circuit where it is then applied to the ground line of the auto amplifier by the fixed resistor and sensors. The auto amplifier monitors the voltage between each sensor and the fixed resistor. The resistance of each sensor varies according to temperature.
Accordingly, the voltage at each sensor varies according to the temperature. The voltage signal is processed by the auto amplifier for A.T.C. system operation.

STARTING FAN SPEED AND OUTLET DOOR CONTROL

Component parts

Starting fan speed and outlet door control components are:

- Auto amplifier
- Fan control amplifier
- In-vehicie sensors (Upper and Lower)
- Duct sensar (Defroster, Ventilator and Floor)
- Ambient sensor
- sunload sensor
- Thermal transmitter (Engine coolant temperature sensor)

System operation

- Fan speed control

At a set temperature of $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$, when the upper compartment temperature is below $21^{\circ} \mathrm{C}\left(70^{\circ} \mathrm{F}\right)$ and the outiet duct temperature is lower than $35^{\circ} \mathrm{C}\left(95^{\circ} \mathrm{F}\right)$, the fan starts at minimum flow rate. As the discharge air temperature increases, the air flow rate increases to bring the compartment temperature to the target level as quickly as possible.
When the ambient temperature is above $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$, fan air flow rate is at full volume.
As interior temperature begins to reach the target temperature, fan speed decreases.
Under heavy sunload conditions, fan speed is increased to maintain uniform interior temperature. Fan speed also increases if the set temperature is decreased.

- Outlet door control

At a set temperature of $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$, when the upper in-venicle temperature is lower than $21^{\circ} \mathrm{C}\left(70^{\circ} \mathrm{F}\right)$ and all of the outlet air temperatures are fower than $35^{\circ} \mathrm{C}\left(95^{\circ} \mathrm{F}\right)$, the system starts with the minimum airflow rate in the defroster mode. When defroster duct temperature rises above $35^{\circ} \mathrm{C}\left(95^{\circ} \mathrm{F}\right)$, the air outlet mode changes from the defroster mode to the DEF/FOOT mode. When floor duct temperature exceeds $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$, the starting fan speed control and outlet door control mode is replaced by the normal automatic control mode. When the upper in-vehicle temperature is far greater than the lower in-vehicle temperature because of a large sunload, the system starts with the ventilator mode, which is replaced by the automatic control mode as the coolant temperature and outlet air temperature increases.

System Operation (Cont'd)

Starting fan speed and outlet door control specifications

(1) : When both upper and lower is-wehicie tamperatufes gre much higher than set temperature.
(2) : When upper in-vehicle temperature is higher than set temperature.
(3) : When upper in-vehtc解 temperature is lower than set tempergture.
(3) : VGBODE engine model

When DEF duct temperature rises above $35^{\circ} \mathrm{C}\left(95^{\circ} \mathrm{F}\right)$
VG30DE engine model
When DEF duct temperature rises above approximately $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$
(Exact temperature depends on ambient temperature.)
(e) : VG30DE engine model

When FLOOR duct temperature sises above $40^{\circ} \mathrm{C}\left\{104^{\circ} \mathrm{F}\right\}$
VG3ODETT engine model
When FloOR duct temperature fises above approximately $36^{\circ} \mathrm{C}\left\{97^{\circ} \mathrm{F}\right\}$
(Exact temperature depends on ambiant tersperature.)
(C) : When water temperature rises above $40^{\circ} \mathrm{C}\left\{104^{\circ} \mathrm{Fl}\right.$ and difference between outlet air qempefature and target tempergture is fower than $5^{\circ} \mathrm{C}\left(9^{\circ} \mathrm{F}\right)$.

MAGNET CLUTCH CONTROL

The auto amplifier controls compressor operation by the ambient temperature and signals from the E.C.C.S. unit.
The auto amplifier will turn the compressor 'ON" or "OFF" as determined by a signal detected by the ambient temperature sensor.

Control Rod Adjustment
 MODE DOOR

1. Move side link by hand and hold mode door in VENT mode.
2. Install mode door motor on heater unit and connect it to harness.
3. Turn ignition switch to ACC.
4. Set up "ACTIVE TEST" mode with CONSULT or set up self-diagnosis STEP 2.
5. Set MODE DOOR position as in the following table.

$\left(\begin{array}{c}\text { E } \\ \text { MODE DOOR POSITION }\end{array}\right.$	Code No.
VENT	$6 \times$

6. Attach mode door rod to side link rod holder.
7. Check mode door operates when position is changed with CONSULT or when code No. 6 X is changed to others.

Code No.	$3 \times$	4X	5X	6 X
Mode door position	DEF	HEAT	B/L	VENT

INTAKE DOOR

f. Install intake door motor on intake unit.
2. Connect intake door motor to harness.
3. Turn ignition switch to ACC.
4. Set up "ACTIVE TEST" mode with CONSULT or set up self-diagnosis STEP 2.
5. Set INTAKE DOOR position as in the following table.

6. Install intake door lever.
7. Set intake door rod in REC position and fasten intake door rod to holder intake door lever.
8. Check intake door operates properly when position is changed with CONSULT or when code No. 6X is changed to others.

Code No.	$3 X$	4X	$5 \times$	$6 \times$
Intake soor position			Partial out side air	Recirculation

Control Rod Adjustment (Cont'd)
 AIR MIX DOOR

1. Connect harness to air mix door motors I and I and set temperature control lever at fullmcold position.
2. Set air mix doors land Il at full-cold position and fasten door rod.
3. Check that when temperature control lever is at fult-cold. both doors are at full-cold position, and when temperature control lever is at full-hot, both doors are at full-hot position.

WATER COCK CONTROL CABLE

Clamp cable at full-close position when air mix door II is at full-cold position, and futl-open position when air mix door II is at full-hot position.

NOTE

Wiring Diagram

L.H. DRIVE MODEL

Contents
How to Perform Trouble Diagnoses for Quick and Accurate Repair HA-114
Symptom Chart HA-115
Sell-diagnosis HA-117
CHECKING PROCEDURE HA-119
STEP 1: MONITOR DIAGNOSIS HA-121
STEP 2: ACTUATOR TEST HA-121
STEP 3: AUXILIARY MECHANISM HA- 122
STEP 4: READOUT OF TROUBLE DATA STORED IN MEMORY HA-123
Consult HA-124
Preliminary Check HA-125
PRELIMINARY CHECK 1
(Air outlet does not change) HA-125
PRELIMINARY CHECK 2 (intake door does not change) HA-126
PRELIMINARY CHECK 3
(insufficient cooling) HA-127
PRELIMINARY CHECK 4
(insufficient heating) HA-129
PRELIMINARY CHECK 5
(Blower motor operation is malfunctioning) HA-130
PRELIMINARY CHECK 6
(Magnet clutch does not engage) HA-131
PRELIMINARY CHECK 7
(Discharged air temperature does not change) HA-132
PRELIMINARY CHECK 8 (Noise) HA-132
Main Power Supply and Ground Circult Check HA-133
Harness Layout for A/C System HA-134
Circult Dlagram for Quick Pinpoint Check HA- 136
Dlagnostic Procedure 1
(SYMPTOM: Selt-diagnosis detects intermittent short or open circuit in each sensor circuit) HA. 137
Diagnostic Procedure 2
(SYMPTOM: Ambient sensor circuit is open) HA-138
Diagnostic Procedure 3
(SYMPTOM: Ambient sensor circuit is shorted) HA-139
Diagnostic Procedure 4
(SYMPTOM: Upper in-vehicle sensor circuit is open) HA-140
Diagnostic Procedure 5
(SYMPTOM: Upper in-vehicle sensor circuit is shorted) HA-141
Diagnostic Procedure 6
(§YMPTOM: Lower in-vehicle sensor circuit is open) HA-142
Diagnostic Procedure 7
(SYMPTOM: Lower in-vehicle sensor circuit is shorted) HA-143
Diagnostic Procedure 8
(SYMPTOM: Def. duct sensor circuit is open) HA-144
Diagnostic Procedure 9
(SYMPTOM: Def. duct sensor circuit is shorted) HA-145
Diagnostic Procedure 10
(SYMPTOM: Vent duct sensor circuit is open) HA-146
Diagnostic Procedure 11(SYMPTOM: Vent duct sensor circuit is shorted)HA-147

TROUBLE DIAGNOSES - Auto Air Conditioner

Contents (Cont'd)

Diagnostic Procedure 12
(SYMPTOM: Floor duct sensor circuit is open) HA-148
Diagnostic Procedure 13
(SYMPTOM: Floor duct sensor circuit is shorted) HA-149
Diagnostic Procedure 14
(SYMPTOM: Sunload sensor circuit is shorted) HA-150
Diagnostic Procedure 15
(SYMPTOM: Air mix door does not operate normally) HA-151
Diagnostic Procedure 16
(SYMPTOM: Intake door does not operate normally) HA-152
Diagnostic Procedure 17
(SYMPTOM: Mode door does not operate normally) HA-153
Dlagnostic Procedure 18
(SYMPTOM: Mode door does not move at all) HA-154
Diagnostic Procedure 19
(SYMPTOM: Magnet clutch does not engage) HA-155
Diagnostic Procedure 20
(SYMPTOM: Air conditioner control switch panel illumination does not come on) HA-157
Diagnostic Procedure 21
(SYMPTOM: Set temperature and ambient temperature do not appear on display window) HA-158
Diagnostic Procedure 22
(SYMPTOM: When air conditioner switch is operated it does not beep) HA-159
Diagnostic Procedure 23
(SYMPTOM: Figures of set temperature and ambient temperature do not appear on the display window and indicator lamp (L.E.D.) does not come on) HA-160
Diagnostic Procedure 24
(SYMPTOM: Switches do not work) HA-161
Diagnostic Procedure 25
(SYMPTOM: Blower motor operation is malfunctioning) HA-162
Electrical Components Inspection HA-165

How to Perform Trouble Diagnoses for Quick and Accurate Repair

WORK FLOW

HA-114

Symptom Chart

DIAGNOSTIC TABLE

Symptom	Possible cause	Diagnostic procedure
Air outlet does not change	- Mode door motor not operating correctly - Inaccurate sensor input - Ne output to mode door motor from auto amplifier	Proceed to Preliminary check 1, then to Diagnostic procedures 17 and 18 if air mix door is maltunctioning.
Intake door does not change	- Intake door motor or mechanism malfunctioning - Inaccurate sensor input - No output to intake door motor from auto amplifier	Proceed to Preliminary check 2, if intake door is malfunctioning. go to Diagnostle Procedure 16.
Insuficient cooling	- Compressor clutch not engaged - Air mix door motors not working properly - Condenser fan inoperative - Low freon level	Proceed to Preliminary check 3. 击 air mix doors do not operate properly, go to Diagnostic procedure 15. Check compressor clutch operation and freon fevel of system.
Dischafged air temperature does not change	- Air mix doors do not operate correctly - Incorrect sensor input	Proceed to Preliminary check 7.
Notse	- Compressor belt terision - Compressor component malfunction - Elower motor interference - Radiator cooling tan interference	Proceed to Pretiminary check 8.
Als conditioner control switch panel mumination does not come on	- Blown fise - Loose or open in harness - Blown bulb	Proceed to Diagnostic procedure 20.
Insufficient heating	- Coolant temperature is tow - Alr mix doors not in correct position - Incorrect sensor inpat	Proceed to Pretiminary check 4. If aif mix doors do not operate correctly, go to Diagnostic procedure 15.
Blower motor operation is malfunctioning	- Blower motor is not recelving power - Vents may be obstructed - Motor does not spin freely - Air intake obstructed - Blown fuse - Malfunctioning blower relay	Proceed to Preliminary check 5 . If blower motor is malfunctioning, go to Diagnostic procedure 25.
Magnet clutch does not engage	- Blown fuse - A/C relay inoperative - Open in wiring - Open ambient sensor circuit - Low freon leve! - Malfunctioning clutch assembly	Proceed to Preliminary check 6, then Diagnostic procedure 19 if cfuich is malfunctioning.

TROUBLE DIAGNOSES - Auto AIr Conditioner
Symptom Chart (Cont'd)

Symptom	Possible cause	Diagnostic procedure
No display on A/C switch panel	- Blown fuse - Malfunctioning bulb	Proceed to Diagnostic procesure 20.
Set temperature and ambient temperature do not appear on dis* play window	- Malfunctioning switch unit - Open in circuit - Malfunctioning auto ampifier	Proceed to Diagnostic procedure 21.
When air conditioner switch is operated, if does not beep	- Malfunctioning A/C switch - Open in hamess or connector - Malfunctioning auto amplifier	Proceed to Diagnostic procedure 22.
Set and ambient temperature do not appear in display and indicator lamp (L.E.D.) does not come on	- Open in harness - Malfunctioning switch panel - Malfunctioning auto ampliffer	Proceed to Diagnostic procedure 23.
Switches do not work	- Malfunctioning switch panel - Open in harress - Malfunctioning auto amplifier	Proceed to Diagnostic procedure 24.

Self-diagnosis

CONSULT AND ONBOARD SELF-DIAGNOSTIC SYSTEM
Function of CONSULT and ONBOARD SELF-DIAGNOSTIC SYSTEM are as follows:

ITEM	MONITOA		CHANGE PARAMETEA		readout of trouble data STORED IN MEMORY	
	CONSULT	ONBOARD	CONSULT	ONBOARD	CONSULT	ONBOARD
Ambient temp.	\bigcirc	\bigcirc			\bigcirc	\bigcirc
Invericle temp. (Upper)	\bigcirc	0			0	\bigcirc
In-vehicle temp. (Lower)	\bigcirc	\bigcirc			0	0
Otsct ternp. (Defroster)	\bigcirc	0			0	\bigcirc
Duct temp. (Ventilator)	\bigcirc	0			\bigcirc	\bigcirc
Duct temp. (Floor)	\bigcirc	\bigcirc			\bigcirc	\bigcirc
Sunload	0	\bigcirc			\bigcirc	\bigcirc
Water temp.	\bigcirc	\bigcirc				
Mode door P.B.R.	\bigcirc	0				
In-vehicle target temp. (Upper)	0					
In-vehicle target temp. (Lower)	\bigcirc					
Outiet air target temp. (Upper)	0		\bigcirc	${ }^{\circ} \mathrm{O}$		
Outlet air target temp. (Lower)	\bigcirc		\bigcirc	$\cdot{ }^{\circ}$		
Mode doar target position	0		\bigcirc	-		
Intake door target position	\bigcirc		0	*		
Blower motor target voltage	0		\bigcirc	*		
Difference between upper and fower target temp.	0		\bigcirc	\% 0		
Output signal to compressor	0		0	* 0		
Set temp.	\bigcirc					
Selected mode	O					
Operated switches status	0					

*: These can be set by self-diagnosis step II; their combinations are as follows:

		A-turnoir				
		Coda	Intiphe	Outare	A/M dodis	Comp
SEF	30	1\%	Cuturific ais	Der	F/H	OH
	codal	44	Ourtide mir	Ftrat	F/ $/ \mathrm{H}$	OHt
	frest	${ }_{5}{ }^{n}$	Partigl outitde sir	$B \pi$		On
	H\% $\mathbf{T W}$.	8	Aucircuintion at	lyant	F IC	On

Self-diagnosis (Cont'd)

The self-diagnostic system diagnoses the sensors, door motors, blower motor, etc. by system line. Refer to applicable sections (items) for details. Shifting from normal control to the selfdiagnostic system is accomplished by starting the engine (turning ignition switch from "OFF" to "ON"), and pressing both the (AUTO) and (OFF) switch for at least 5 seconds.
This system will be cancelled by either pressing the (OFF) switch or turning the ignition switch "OFF". Shifting from one step to another is accomplished by means of pushing the (AUTO) switch, as required.

Self-diagnosis (Cont'd)

 switeh functions remain as usual.

Self-diagnosis (Cont'd)

STEP 1: MONITOR DIAGNOSIS

in STEP 1 mode, "00" and "data", respectively appear in SET and AMB section of display.
Each time the " HI " switch is pressed, the code number in the SET section advances one number, and data corresponding with the code number appears in the AMB section. Each time the "LO" switch is pressed, the code number reduces by one number, and data corresponding with the code number appears in the AMB section.
If the temperature shown on the display greatly differs from the actual temperature, check the sensor circuit first, then inspect the sensor itself according to the procedures described in Electrical Components Inspection.

* For cross-reference of code number and corresponding data, refer to "Monitor Diagnosis" in STEP 1.

STEP 2: ACTUATOR TEST

In STEP 2 mode, " 30 " and " 33 " respectively appear in the SET and AMB sections of the display.
When the " HI^{\prime} switch is pressed one time, the first code advances. This code returns to " 3 " after it reaches " 6 ". Similarly, when the "LO" switch is pressed one time, the second code advances one number. After the code number " 6 " appears, it returns to ' 3 ',

Self-diagnosis (Cont'd)

During inspection in STEP 2 mode, the auto amplifier will forcefully transmit an output to the affected actuators in response to the code No. shown on the display, as indicated in the table below.
Checks must be made for improper operation visually, by listening to any noise, or by touching air outlets with your hand, etc.

	3	4	5	6
Actuator	Flist code No.	3		
Mode door	DEF	HEAT	B/L	VENT
Intake door	FRE	FRE	50%	REC
FRE	Air mix door	Full	Full	$30^{\circ} \mathrm{C}$
Hot	Hot	$\left(86^{\circ}\right.$ F)	Cold	
Compressor	OFF	OFF	ON	ON

| Second code No. | 3 | 4 | 5 | 6 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Blower motor | | | | |
| Voltage | 4 V | 6 V | 9 V | 12 V |

Operating condition of each actuator cannot be checked by indicators.

1) First and second codes can be set independently.
2) When tirst code " 5 " appears, air mix door activates. A stabilized outfet temperature $30^{\circ} \mathrm{C}\left(86^{\circ} \mathrm{F}\right)$ is reached after air mix door has been operating for approximately one minute.

STEP 3:AUXILIARY MECHANISM

Changes of difference between upper and lower target temperatures.

* Figures in parentheses '()" refer to values for " F " specifications.
In STEP 3 mode, " 40 " and " 0 " (if this number is changed, the corresponding number appears) respectively appear in the SET and $A M B$ sections of the display.
Each time the "HI" switch is pressed, the number in the AMB section advances. This number will increase up to 20 for ${ }^{\circ} \mathrm{C}$ specifications and 36 for ${ }^{\circ} \mathrm{F}$ specifications. Each time the "LO" switch is pressed, the number decreases. This number decreases to -20 for ${ }^{\circ} \mathrm{C}$ specifications and -36 for ${ }^{\circ} \mathrm{F}$ specifications. For "C specifications, pressing the " HI " or "LO" switch each time increases or decreases the data number by " 1 " degree (and by " 1 " through " 3 " degrees for "F specifications).

${ }^{\circ} \mathrm{C}$ specifications	Data	-20	- - - - -	-1	0	1	- -W - - . - -m	20
	Difference between upper and lower target temperatures	$-2.0{ }^{\circ} \mathrm{C}$	- - -	$-1^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	$0.1{ }^{\circ} \mathrm{C}$	- - -	$2.0{ }^{\circ} \mathrm{C}$
${ }^{\circ} \mathrm{F}$ specifications	Data	-36	- - -	-2	0	$2^{\circ} \mathrm{C}$	- -	36
	Difference between upper and lower target temperatures	$-3.6{ }^{\circ} \mathrm{F}$	- - -	$-0.2^{\circ} \mathrm{F}$	$0^{\text {c }} \mathrm{F}$	$0.2^{\circ} \mathrm{F}$	- $-m$	$3.6{ }^{\circ} \mathrm{F}$

Difference between upper and lower target temperatures changed in the preceding procedure is kept until the next change is done or the battery cable is removed.

Self-diagnosis (Cont'd)

STEP 4: READOUT OF TROUBLE DATA STORED IN MEMORY

In STEP 4 mode, " 50 " and "trouble data" respectively appear in the SET and AMB sections.
Each time the "Hl" switch is pressed, the code number advances by one number. After it reaches " 6 ", it will return to " 0 ". Each time the "LO" switch is pressed, the code number reduces by one number. After it reaches " 0 ", it will return to " 6 ".

When the sensor becomes inoperative, number of engine starts/stops occurring since last problem was detected, appears in the AMB section of the display.
Open circuit or short circuit is indicated by " 0 " or " ω ".

Code No.	Sensor	Open circuit	Short circuit
[i]	Ambient sensor	Less than $-70^{\circ} \mathrm{C}\left(-94^{\circ} \mathrm{F}\right)$	Greater than $141^{\circ} \mathrm{C}\left(286^{\circ} \mathrm{F}\right)$
E	Froom upper sensor	Less than $-38^{\circ} \mathrm{C}\left(-36^{\circ} \mathrm{F}\right)$	Greater that $141^{\circ} \mathrm{C}\left(286^{\circ} \mathrm{F}\right)$
E_{3}	Room lower sensor	Less than $-38^{\circ} \mathrm{C}\left(-36^{\circ} \mathrm{F}\right)$	Greater than $141^{\circ} \mathrm{C}$ ($286^{\circ} \mathrm{F}$)
\%	DEF duet sensor	Less than $-38^{\circ} \mathrm{C}\left(-36^{\circ} \mathrm{F}\right)$	Greater than $141^{\circ} \mathrm{C}\left(286^{\circ} \mathrm{F}\right)$
5	VENT duct sensor	Less than $-38^{\circ} \mathrm{C}\left(-36^{\circ} \mathrm{F}\right)$	Greater than $141^{\circ} \mathrm{C}\left(286^{\circ} \mathrm{F}\right)$
${ }_{0}^{5}$	Floor duct sensor	Leess than $-38^{\circ} \mathrm{C}\left(-36^{\circ} \mathrm{F}\right)$	Greater than $141^{\circ} \mathrm{C}\left(286^{\circ} \mathrm{F}\right)$
5	Suntoad sensor	Open circuit can not be detected by self-diagnosis.	Greater than $1.784 \mathrm{~kW}(1,534$ keal/h, 6,087 BTU/h $) / \mathrm{m}^{2}[19.19 \mathrm{~kW}(16,506 \mathrm{kcal} / \mathrm{h}, 65,502$ BTU/h $/ \mathrm{sq} \mathrm{ft}]$

SEF392:

Consult

CONSULT INSPECTION PROCEDURE

1. Turn off ignition switch.
2. Connect "CONSULT" to diagnostic connector.
(Diagnostic connector is located in left dash side panel.)
3. Turn on ignition switch.
4. Touch "START".
5. Touch "AUTO A/C".
6. Perform each diagnostic mode according to the inspection sheet as tollows:
For further information, read the CONSULT Operation Manual.

Preliminary Check

PRELIMINARY CHECK 1

Air outlet does not change.

PRELIMINARY CHECK 2

Intake door does not change．

CHECK NNTAKE DOOR MOTOR．

Set up＂ACTIVE TEST＂mode with CONSULT． or
Set up seli－diagnosis STEP 2.
Does intake air change according to each ordered po－ sition？

	FRE		FRE／ FEC	PEC
	$3 \times$	4X	$5 \times$	$6 \times$
Air intake	FRE		FRE／ REC	PEC

CHECK SENSOR CIRCUIT IN DETAIL ACCORDING TO THE DIAGNOSTIC PROCEDURE BELOW CORAE－ SPONDING TO EACH COOE NO．

CONSELLT inditation mbinent sentof civervit it en			Hown to repair	Refertnct past
	患者	0	Go 10 Diagnostic ancocmdure 2.	HA－138
Ambinm seasor zireuit is shorted．		${ }^{+}$	Go to Disencatic procedure 3.	HA－139
Upper in－wehicie sempr cizcuit is open．	$\underset{\sim}{F}$	\dagger	Gna to Dimerometic． procedure 4.	HA－$\geqslant 40$
Uppar inventitelt gensor ciscuit is shortide．	\％	$=$	Ge to Diegrostic procedury 5.	
Lower ithenicter tenwor circuiz it open．		\square	Go to कbidenentict procestare B ．	HA． 142
Lowt intwhitit sensor elfeuis ht thortad．	0	\cdots	Go to Dingnostit procedure 3 ．	HA－ 143
Defroster tduct）sengot cikeuit in opers．		0	Go to Dimpostic procedure 1.	HA． 744
O\＆frisiter tauct）monsw cireuis in shorterf．		－	Go to Bieprontic procediare S ．	HA．145
Vent fdactl monser cirruir is open．	$\stackrel{4}{3}$	t	Go to Giagnestic procedure 10.	\＃\ddagger A－146
Vept fiduct｜sencor cirtuit is thorted．		\sim	Go to Dingnostic procusiura 11.	WA－147
Flopr iductl mensor circusis is apen．	屌	ह	Go to Diegnoatic ortocetute 12.	\＃\ddagger A－148
Ffocor（factl）tenmor circtuit is therred．		$=$	Oo to Diennostic procediare 13 ．	＋${ }^{\text {A }}$－149
Sunious sensor circuit is tharted．	虏	\cdots	Gut to Disonnotic弗roktdure 14.	＋14，150

When maffunctioning sensor circuit，ambient sensor，in－ velicice sensor，and duct sensors afe suspected，it is useful to check temperature detected by each sensor with self－diagnosis STEP 1 to confirm the temperatare is within normal range before performing Diagnostic Procedures．

Preliminary Check (Cont'd)

PRELIMINARY CHECK 3

insufficient cooling

- Read out self-diagnosis result with CONSULT or perform self-diagnosis STEP 4 before referring to the following flow chart.

Preliminary Check (Cont'd)

Preliminary Check (Cont'd)

PRELIMINARY CHECK 4

Insufficient heating

- Check coolant level, engine temperature and heater hoses and read out self-diagnosis result with CONSULT or perform self-diagnosis STEP 4 before referring to the following flow chart.

Preliminary Check (Cont'd)

PRELIMINARY CHECK 5

Blower motor operation is malfunctioning.

PRELIMINARY CHECK 6

Magnet clutch does not engage.

PRELIMINARY CHECK 7

Discharged air temperafure does not change.

CHECK AIR MIX DOOR MECHANISM.
Refer to DOOR CONTROL.
Repala or adjust.

PRELIMINARY CHECK 8

Noise

Refer to page HA-71.

Main Power Supply and Ground Circuit Check POWER SUPPLY CIRCUIT CHECK FOR A/C SYSTEM

 Check power supply circuit for air conditioning system. Refer to "POWER SUPPLY ROUTING" in section EL and A/C ELECTRICAL CIRCUIT - Auto Air Conditioner.
AUTO AMP. REMOVAL

1. Remove driver side instrument lower Hid.
2. Remove vent duct.
3. Remove auto amp. with harness connected.

AUTO AMP, CHECK

1. Disconnect auto amp. harness connectors.
2. Connect voltmeter from harness side.
3. Measure voltage across terminal No. (4) or No. (41) and body ground.

Voltmeter terminal		Voltage (Approx.)
(1)	θ	
(6)	Body ground	12V
(1)		

Check body ground circuit for control unit with ignition switch OFF

1. Disconnect auto amp. harness connector.
2. Connect ohmmeter from harness side.
3. Check continuity between terminal No. or and body ground.

Harness Layout for A/C System

Engine compartment

Passenger compartment

Circuit Diagram for Quick Pinpoint Check

Diagnostic Procedure 1

SYMPTOM: Self-diagnosis detects intermittent short or open circuit in each sensor circulf.
Check each connector connection as shown in the following table, and check the condition of each wire.

A
Ambient sensor harness confector (E6)

3FAB73C

Diagnostic Procedure 2

SYMPTOM: Ambient sensor circuit is open. (CONSULT or selfdiagnosis STEP 4 indicates this.)
A
 ness connector.
Do approximately 5 volts exist between ambient sensor harness connector terminal No. (3) and ?

Check circuit continuity between ambient sensor harness connec* tor terminal No. (28) and auto amp. hafness confector terminal No. (2).

Check circuit continuity between amblent sensor harness connecfor terminal No. (13) and auto amp. harness connector terminal No. (27)

CHECK AMBEENT SENSOR. (Reter to Electrical Components Inspection.)

Replace auto amp.

Note:

If the result is N.G. atter checking circuit continuity, repair harness or connector.

Diagnostic Procedure 3

SYMPTOM: Amblem sensor circuit is shorted. (CONSULT or self-diagnosis STEP 4 indicates this.)

A

CHECK AMBIENT SENSOR
CIRCUIT BETWEEN AMBEENT
SENSOR AND AUTO AMP.
Disconnec: ambient sensor
harness connectof.
Do approximately 5 volts exist
between ambient sensor har.
ness connector terminal No.
and (8)?

GHECK AMBIENT SENSOR.

Check the circuit between ato amp. harness connector terminat No. (30) and (6) is not shorted.

Replace auto amp.
(Refer to Electrical Components Inspection.)

Diagnostic Procedure 4

SYMPTOM: Upper in-vehicle sensor circuit is open. (CONSULT or self-diagnosis STEP 4 indicates this.)

A

CHECK IN-VEHICLE UPPER SEASOR CIRCUIT BETWEEN IN-VEHICLE UPPER SENSOR AND AUTO AMP.
Disconnect in-vehicle upper sensor harness connector.
Do approximately 5 volts exist between in-vehicle upper sensor harness connector terminal No. (3) and 1 ?

Disconnect auto amp. harress connector.
Check circuit continuity between in-venicle upper sensor harness connector terminal No. (6) and auto amp. harness connector terminal No. (2).

Check circtit continuity between Invehicle upper sensor hamess connector terminal No. (33) and auto amp. harness connector terminal No. (3).

Replace auto amp.

Continaity should not exist.

Diagnostic Procedure 5

SYMPTOM: Upper in-vehicle sensor circuil is shorted. (CON. SULT or self-diagnosis STEP 4 Indicates this.)

A
CHECK IN-VEHICLE UPPER SENSOR CIRCUTT BETWEEN IN-VEHICLE UPPER SENSOR AND AUTO AMP.
Disconnect in-vehicle upper sensor harness connector. Do approximately 5 volts exist between in-vehicle upper sensor harness connector teminal No. (12) and 3 ?

Check the circuit between auto amp. harness connector terminal No. (3) and (27) is not shorted.

SHABR3C

Diagnostic Procedure 6

SYMPTOM: Lower in-vehicle sensor circuit is open. (CONSULT or sell-diagnosis STEP 4 indicates this.)

A

CHECK IN-VEHICLE LOWER SENSOR CIRCUIT BETWEEN IN-VEHICLE LOWER SENSOR AND AUTO AMP.
Disconnect in-vehicle lower sensor harness connector.
Do approximatefy 5 volts exist between in-vehicle lower sensor harness connector terminal No. (99) and (39)?

Check circesit continuity between in-vehicle fower sensor harness connector terminal No. (2) and auto amp. harness connector terminal No. (2).

connector.

Check cifcuit continuity between in-vehicle lower sensor harness connector terminal No. (19) and ato amp. harness connector terminal No. (3).

Note:
If the result is N.G. after checking clrcuit conilnulty, repair harness or connector.

Diagnostic Procedure 7

SYMPTOM: Lower in-vehicle sensor circuit is shorted. (CONSULT or sell-diagnosis STEP 4 indicates this.)

A
CHECK IN-VEMICLE LOWEA SENSOR CIRCUIT BETWEEN IN-VENICLE LOWER SENSOR AND AUTO AMP.
Disconnect in-vehicle lower sensor harness connector. Do approximately 5 volts exist between in-vehicle lower sensor harness connector terminal No. (29) and ?

CHECK IN-VEHICE UPPER SENSOR.
(Refer to Electrical Components Inspection.)

Note:
If the resull is N.G, afler checking circult continulty, repair harnest or connector.

SHA3EW

Diagnostic Procedure 8

SYMPTOM: Def. duct sensor circult is open. (CONSULT or self-diagnosis STEP 4 indicates this.)
A
CHECK DEF. DUCT SENSOA CIRCUIT BETWEEN DEF. DUCT SENSOR AND AUTO AMP. Discomect def. duct sefisor harness connector,
Do approximately 5 volts exist between def. duct sensof harness connector terminal No. (8) and (3)?

Check circuit continuity between def. duct sensor harness connector terminal No. (6) and auto amp. harness connector terminal No. (3).

CMECK DEF. DUCT SENSOR. (Refer to Electrical Components Inspection.)

Note:
If the result is N.G. after checking circuif continutity, repair harness or connector.

Diagnostic Procedure 9

SYMPTOM: Def. duct sensor circuit is shorted. (CONSULT or self-diagnosis STEP 4 indicates this.)

A
CHECK DEFF DUCT SENSOR CIRCUIT BETWEEN DEF. OUCT SENSOR AND AUTO AMP. Disconnect def. duct sensor harness connector. Do approximately 5 volts exist between det. duct sensor harness connector terminal No. (8) and (9)?

CHECK DEF, DUCT SENSOR. (Reter to Electrical Components Inspection.)

Replace auto amp.

Note:
If the result is N.G. after checking circuil conthulty, ropalf harness or connector.

A Vent duct sensor herness comnatetor (4)

SHA393C

Diagnostic Procedure 10

SYMPTOM: Vent duct sensor circuit is open. (CONSULT or
sell-diagnosis STEP 4 indicates this.)

A

CHECK VENT DUCT SENSOA CIRCUIF BETWEEN VENT DUCT SENSOR AND AUTO AMP. Disconnect vent duct gensor harness connector. Do approximately 5 volts exist between vent duct sensor harness connector terminal No. (2) and (1)?	$N . \mathrm{G} . \begin{aligned} & \text { Disconnect auto amp. harness } \\ & \text { connector. }\end{aligned}$
	C + Note
	Check circuit continuity between vent duct sensor harness connector terminal No. (a) and auto amp. harness connector terminal No. (2).
Io.k.	O.K.
Disconfect auto amp. harness connector.	Replace auto amp.

Check circuit continuity between vent duct sensor harness connector terminal No. (6) and auto amp. harness connector terminal No. (2).

Note:

If the result is N.G. after checking circuit continuty, repalir harness or connector.

A Vent duct sensor hisnets compector (c)

SHA396C

Continuity shosuld not exist.

Dlagnostic Procedure 11

SYMPTOM: Vent duct sensor circuit is shorted. (CONSULT or self-diagnosis STEP 4 indicates this.)
A

Note:

If the reauli is N.G. gfter checking circult conlinulty, repalir harness or connector.

Diagnostic Procedure 12

SYMPTOM: Floor duct sensor circult is open. (CONSULT or self-diagnosis STEP 4 indicates this.)

A

CHECK FOOT DUCT SENSOR
N.G. CIRCUIT BETWEEN FOOT DUCF SENSOR AND AUTO AMP Disconnect foot duct sensor harness connector.
Do approximately 5 volts exist between foot duct sensor harness connector terminal No. (2) and ?

Disconnect atto amp. harness connector.

Check circuit continuity between foot duct sensor harness connector terminal No. (39) and atito amp. harness connector terminat No. (3).

Replace auto amp

Note:

If the resuli is N.G, after checioing circuit continuity, repair harness or connector.

Diagnostic Procedure 13

SYMPTOM: Floor duct sensor circuit is shorted. (CONSULT or self-diagnosis STEP 4 indicates this.)

A

CHECK FOOT DUCT SENSOR
CIRCUIT BETWEEN FOOT DUCT N.G.
Disconnect auto amp. harness comnector.

B

Check the circuit between auto amp. harness connector termi* nal No. (s) and (27) is not shorted.

Fepface vent duct sensor.

Note:

If the result is N.G. after checking cfrcuit continuify, repair harness or connector.

A Suntiond sensor harness

Continuity should not exist. SHA404C

Diagnostic Procedure 14

SYMPTOM: Sunload sensor circuit is shorted. (CONSULT or self-diagnosis STEP 4 indicates this.)
A
CHECK SUNLOAD SENSOR CIRCUIT BETWEEN SUNLOAD SENSOR AND AUTO AMP.
Disconnect sunioad sensor hazness connector.
Do approximately 5 volts exist between sumload sensor har. ness connector terminal No. (4) and 6 ?

CHECK SUNLOAD SENSOR.
(Refer to Electrical Components
(nspection.)

Noie:
If the result is N.G. after checking circult continuty, repair hamess or connector.

A

SHA6980

Dlagnostic Procedure 15

SYMPTOM: Air mix door does not operate normally.

- Read out self-dlagnosis result with CONSULT or perform self-diagnosis STEP 4 before referring to the following flow chart.
- Remove combination meter assembly to make working space and reconnect air conditioner switch connector.

A

CHECK FOR SIGNALS TO AIR $\xrightarrow{\text { N.G. Check circuit contintity between }}$ MXX DOOR MOTOR.

Set up "ACTIVE TEST'" mode with CONSLUT.
Set up sell-diagnosis STEP 2.
Set air mix door position as shown in the following chart. Check if approximately 10 V exists for 3 seconds every 10 sec onds between each terminal.*
 auto amp. harness connector terminals and intermediate connector terminals.

Inter- mediate connector	Auto amp. connector	Continuity
(42)	$(42$	Yes
(43)	(4)	Yes
$(94$	(4)	Yes
(4)	(4)	Yes

Check continuity between inter-
mediate connector terminal and each air mix door motor harness connector terminal.

Intermediate comector	Air mix door I \%oter connector	Continuity
(4)	(42)	Yes
(43)	(4)	Yes
linef. mediate connector	Aif mix doar II motor connector	Continuity
(4)	(4)	Yes
(45)	(4)	Yes
O.K		

Replace air mix door motor.

Diagnostic Procedure 16

SYMPTOM: Intake door does not operate normally.

- Read out self-diagnosis result with CONSULT of perform self-diagnosis STEP 4 before referring to the following flow chart.

A
CHECK FOR SIGNALS TO \mathbb{N} TAKE DOOR MOTOR.
Disconnect intake door motor hafness connector.

Set up "ACTVE TEST"
mode with CONSU庄T.
Set up self-diagnosis STEP 2.
Set intake door position as shown in the following chart. Check if approximately 10 V exists for 2.5 seconds between each terminal

8
$\xrightarrow{\text { N.G. } \rightarrow \text { CHECK OUTPUT OF AUTO AMP. }}$ (Set up 'ACTIVE TEST',

Check contimuity between auto amp. harness connector terminal No. (4) and intake door motor harness connector terminal No. (*).
Check ato amp, harness connector terminal No. (4) and intake door motor harness connector terminal No. ©.
N.G.

Repair harness or connector.

SHATOSC

Diagnostic Procedure 17

SYMPTOM: Mode door does not operate normally.

- Read out self-diagnosis result with CONSULT or perform self-diagnosis STEP 4 before referring to the following flow chart.

A

CHECK P.B.R. CIRCUIF Set up "ACTIVE TEST" mode with CONSULT. Set ap self-diagnosis STEP 2.
Set mode door motor as shown in the following chart.

Check P.B.R. voltage with data monltor function in "ACTIVE TEST" mode.

Mode door position	P.B.R. voltage fapprox.
DEF	4.8 V
FOOT/DEF	2.5 V
E/L	1.1 V
VENT	0 V

Check if voltage between auto amp. harness connector terminals \% and (9) varies from approximately 5 V to approxpmately $0 V$ according to mode door position varies.

N.G.

CHECK MODE DOOA MOTOR. Refer to Electrical Components inspection.

CHECK HARNESS BETWEEN AUTO AMP. AND MODE DOOR MOTOR.

Auto amp. harness connector terminal	Mode door moto namness connector terminal	Continuity
(3)	(4)	No
	(2)	Yes
	(3)	No
6	4	Yes
	(2)	No
	(3)	No
(3)	(5)	No
	(22)	No
	(3)	Yes
IO.K.		N.G.
Repair harness of comnector.		

Diagnostic Procedure 18

SYMPTOM: Mode door does not move at all.

- Read out self-diagnosis result with CONSULT or perform self-diagnosis STEP 4 before referring to the following flow chart.
A

B

Set mode door posltion as shown in the following chart. Check if approximately 10 V exists between mode door mor tor harness connectof terminals (47) and (30) for approximately 1.3 seconds every 10 seconds.

CHECK OUTPUT OF AUTO AMP.
 Set up "ACTIVE TEST" mode with CONSULT. Set up selfodiagnosis STEP 2.
Set mode door position as shown in the following chart. Check if approximately 10 V exists between mode door motor harness connector terminats (4) and (45) for approximately 1.3 seconds every 10 seconds.

Check continuity between auto amp. harness connector terminal No. (4), (4) and mode door motor harness connector terminal No. (47). (79) respectively.

Dlagnostic Procedure 19

SYMPTOM: Magnet clutch does not engage.

- Perform Preliminary check $\mathbf{6}$ betore referring to the followIng flow chart.

A
CHECK POWER SUPPLY FOR COMPRESSOR.
Disconnect compressor harness connector.

Set up "ACTIVE TEST" mode with CONSULT. Set up self-diagnosis STEP 2.
Set compressor as shown in the following chart.
Check II approximately 12 V exists between compressor hafr ness connector terminal and body ground.

Diagnostic Procedure 19 (Cont'd)

Replace low-pressure switch.

Do approximately 8 to 9 volts exist between E.C.C.S. control unit harness comector terminal
 No. (4) and body ground?

Discomect auto amp. harness connector.

Note:

If the result is N.G. atter checking circuli continuity, repair harness or connector.

Diagnostic Procedure 20

SYMPTOM: Air conditioner control switch panel illumination does not come on.

A

Tum on light switeh.
Set flumination controt switch at
N.G.

Check illumination control system. Mefer to section EL. the brighfest position.
Check if approximately 12 V exists between switch panel har* ness connector terminal No. (13) and (ib).

Replace bult.

Diagnostic Procedure 21

SYMPTOM: Set temperature and ambient femperature do not appear on display window.

A

B
Check if approximately 0.5 to $2 V$
exist between switch unit harness connector terminals No
(16) and (1).

Check if approximately 0.5 to 2 V exist between auto amp. harness connector terminals (4) and (1) .

C. giower contral amp, harness connector (10)

SHA451C

Diagnostic Procedure 25

SYMPTOM: Blower motor operation is malfunctioning.

- Perform Preliminary check 5 before referring to the of flowing flow chart.

A

CHECK POWER SUPPLY FOR FAN CONTROL AMP.
Do approxmately 12 volts exist between fan control amp. harness comector terminal No . (6) and body ground?

CHECK BODY GROUND CIRCUIT FOR FAN CONTROL AMP.
Does continuity exist between fan control amp. barness connector terminal No. (3) and body ground?

CHECK OUTPUT OF AUTO AMP

Set up "ACTIVE TEST" mode with CONSULT
Set up self-diagnosis STEP 2.
Measure voltage across fan control amp. harness connector terminals No. (3) and (5).

(Go to next page.)

Diagnostic Procedure 25 (Cont'd)

[

Set up "ACTIVE TEST" mode with CONSULT.
Set blower motor voliage at 9 volts
Set up self-diagnosis
STEP 2. Set code No. in $\times 5$.
Do approximately 12 volts exist between fan control amp. harness connector terminal No. (\%) and 3 ?

Set ap "ACTIVE TEST" mode with CONSULT.
mode with CONSULT.
Set blower motor votage at 9 volts
Set up selt-diagnosis
STEP 2. Set code No. in X 5.
Do approximately 12 volts exist between auto armp. harness connector terminal No. and body ground?
CHECK FOR OUTPUT OF AUTO

CHECK FOR FEEDBACK SIGNAI TO AUTO AMP.
Disconnect fan control amp. connector only.
Do approximateły 12 volts exist between auto amp. harness connector terminal No. (3), (9) and
 body ground?

Diagnostic Procedure 25 (Cont'd)

Check power supply circuit. (Refer to "POWER SUPPLY ROUTING" in Et. section.)
Do approximately 12 volis exist between blower relay harness connector terminal No. (4), (s) and body ground?
I

Do approximately 12 volts exist between blower relay harness connector terminal No. (\$) and body ground?

Does continuity exist between blower relay harness connector terminal No. @s) and auto amp. harness connector terminal No . (2)

Note:
If the result is N.G. after checking circuit continulty, repair harness or connector.

Electrical Components Inspection

TEMPERATURE SENSORS

After disconnecting temperature sensors harness connector measure resistance between terminals of each sensor, using the table below.

Temperature ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	Fesistance k Ω
-40 (-40)	210.55
-35 (-31)	146.86
-30 (-22)	103.97
-25 (-13)	74.63
-20 (-4)	54.28
-15 (5)	39.97
-10 (14)	29.77
$-5(23)$	22.43
0 (32)	17.07
5 (41)	13.11
10 (50)	10.78
15 (59)	7.96
20 (68)	6.29
25 (77)	5.00
30 (86)	4.01
35 (95)	3.24
40 (104)	2.63
45 (113)	2.15
50 (122)	1.77
55 (135)	1.47
60 (140)	1.22
65 (149)	1.02
70 (158)	0.86
75 (167)	0.73
80 (176)	0.62

SUNLOAD SENSOR

Measure voltage between terminals (4) and (42) at vehicle harness side using the table below.

Input curtent mA	Output voltage (V)
0	5
0.1	4
0.2	3
0.3	2
0.4	1
0.5	0

- When checking sunload sensor, select a place where sun shines on it directly.

MODE DOOR MOTOR

Check to see if motor rotates when 12 V is applied across mode door motor connector terminais No. (77) and No. (69).

Terminal No.		Mode door operation
(1)	(10)	
\ominus	\oplus	VENT \rightarrow DEF
θ	Θ	STOP
${ }_{\oplus}$	θ	DEF \rightarrow VENT

Check to see if mode door P.B.R. resistance is varied according to mode door position, as shown in the following table.

Mode door position	Resistance between terminal No. (6) and (72)
DEF	$3 \mathrm{k} \Omega$
FOOT/DEF	$1.6 \mathrm{k} \Omega$
B/L	0.7 kS
VENT	0Ω

Electrical Components Inspection (Cont'd)

AIR CONDITIONER SWITCH UNIT

Check the resistance between switch unit connector terminals as follows:

Switch condition	Resistance
Press	Less than 500Ω
Free	∞

Example:
When Auto switch is pressed, the resistance between terminal No. (1) and (4) is less than 500Ω.

BLOWER MOTOR

- Refer to page HA-92.

RELAY

- Refer to page HA-93.

LOW-PRESSURE SWITCH

- Refer to page HA-93.

General Specifications

COMPRESSOR

Aode	M. $15 \$ 70$
Tуре	Swash plate
Displacement cm^{3} (cls inl/fev.	170 (10.37)
Cylinder bore x stroke mim (in)	$40.0 \times 22.6(1.575 \times 0.890)$
Direction of fotation	Clockwise (Viewed from drive end)
Drive bett	Poly V

LUBRICATION OIL

Model	HTTACHI make部S 170
Type	SUNISO 5GS
Capacity	
$\mathrm{m} \boldsymbol{\ell}(1 \mathrm{mp}$ ¢ floz$)$	
Fotal in systern	150 (5.3)
Amount of oil which can be dratnad	Approx. 120 (4.2)
Compressor (Service parts) charging amount	\$50 (5.3)

REFRIGERANT

Type	R-12
Capacity $\quad \mathrm{kg}$ (1b)	
VG30DE engine model	0.85-0.95 (1.87-2.09)
VG3ODETT engine model	0.75-0.85 (1.65-1.87)

Inspection and Adjustment

ENGINE IDLING SPEED (When A/C is ON.)

- Refer to EF \& EC section.

BELTT TENSION

- Refer to Checking Drive Belfs (MA section).

COMPRESSOR

Modei	MIS 170
Cfutch disc-puiley cleatance	$0.5-0.8$
	man (ifi)

ELECTRICAL SYSTEM

SECTION

When you read wiring diagrams: - Read Gl section, "HOW TO READ WIRING DIAGRAMS".

CONTENTS

HARNESS CONNECTOR EL- 2
STANDARDIZED RELAY EL- 3
POWER SUPPLY ROUTING EL. 5
BATTERY EL- 9
STARTING SYSTEM EL- 17
STARTING SYSTEM - Starter - EL. 19
CHARGING SYSTEM EL- 25
CHARGING SYSTEM - Alternator - EL. 27
COMBINATION SWITCH EL- 35
INSTRUMENT SWITCH EL- 38
HEADLAMP EL- 40
HEADLAMP - Headlamp Aiming Control EL- 48
EXTERIOR LAMP EL- 56
INTERIOR LAMP EL- 62
METER AND GAUGES EL- 65
WARNING LAMPS AND CHIME EL- 70
TIME CONTROL SYSTEM EL- 75
WIPER AND WASHER EL- 83
HORN, CIGARETTE LIGHTER, CLOCK EL- 89
REAR WINDOW DEFOGGER EL- 90
AUDIO AND POWER ANTENNA EL- 93
AUTOMATIC SPEED CONTROL DEVICE (A.S.C.D.) EL- 99
LOCATION OF ELECTRICAL UNITS EL-109
harness layout EL-114
WIRING DAGRAM REFERENCE CHART

Description

HARNESS CONNECTOR

- All harness connectors have been modified to prevent accidental loosing or disconnection.
- The connector can be disconnected by pushing or lifting the locking section.

CAUTION:

Do not pull the harness when disconnecting the connector.
[Example]

Description

NORMAL OPEN, NORMAL CLOSED AND MIXED TYPE RELAYS

Relays can mainly be divided into three types: normal open, normal closed and mixed type relays.

	NORMAL OPEN RELAY	NORMAL CLOSED RELAY	MIXED TYPE RELAY
	Flows		

SELBE1H

TYPE OF STANDARDIZED RELAYS

	$\begin{aligned} & \text { 1M } 1 \text { Make } \\ & \text { 1T } 1 \text { Transfer } \end{aligned}$	2M....... .2 Make $1 \mathrm{M} \cdot 1 \mathrm{~B}1$ Make 1 Break
1 M		2M
$1 T$		1M.1B

Type	Outer view	Circuit	Connector symbol and connection	Case coior
17				BLACK
1				BLUE or GREEN
2M				BROWN
1M-1B				GRAY

selasint

Wiring Diagram
With daytime ligitit system
（WD）：Without daytime lioht system

\qquad
（2）四若
（2）
男 （Main Marness）

(1199 M M59

（8）
（Body Marness）
目

四믄

（

－
（a）

Fuse Block Internal CIrcuit

Fuse

a. If fuse is blown, be sure to eliminate cause of problem before installing new fuse.
b. Use fuse of specified rating. Never use fuse of more than specified rating.
c. Do not install fuse in oblique direction; always insert it into fuse holder properly.
d. Remove fuse for clock it vehicle is not used for a long period of time.

Fusible Link

A melted fusible link can be detected either by visual inspection or by feeling with finger tip. If its condition is questionable, use circuit tester or test lamp.

CAUTION:

a. If fusible link should melt, it is possible that a critical circult (power supply or large current carrying circuit) is shorted. In such a case, carefully check these circuits and eliminate cause of problem.
b. Never wrap periphery of fusible link with vinyl tape. Extreme care should be taken with this link to ensure that it does not come into contacl with any other wiring harness, or vinyl or rubber parts.

CAUTION:

a. If becomes necessary to start the engine with a booster battery and jumper cables, use a 12-volt booster battery.
b. After connecting battery cables, ensure that they are tightly clamped to battery terminals for good contact.
c. Never add distilled water through the hole used to check specffic gravity.

How to Handle Battery METHODS OF PREVENTING OVER-DISCHARGE

The following precautions must be taken to prevent overdischarging a battery.

- The battery surface (particularly its top) should always be kept clean and dry.
If the top surface of a battery is wet with electrolyte or water, leakage current will cause the battery to discharge. Always keep the battery clean and dry.
- When the vehicle is not going to be used over a long period of time, disconnect the negative battery terminal. (If the vehicle has an extended storage switch, turn it off.)
- Check the charge condition of the battery.

Periodically check the specific gravity of the electrolyte. Keep a close check on charge condition to prevent overdischarge.

CHECKING ELECTROLYTE LEVEL.

WARNING:

Do not allow battery fluid to come in contact with skin, eyes, fabrics,or painted surfaces. After touching a battery, do not touch or rub your eyes until you have thoroughly washed your hands. If the acid contacts the eyes, skin or clothing, immediately flush with water for 15 minutes and seek medical attention. Normally the battery does not require additional water. How. ever, when the battery is used under severe conditions, adding distilled water may be necessary during the battery life.

BATTERY

How to Handle Battery (Cont'd)

- Remove the cell plug using a suitable tool.
- Add distilled water up to the MAX level.

SULPHATION

When a battery has been left unattended for a long period of time and has a specific gravity of less than $\$.100$, it witl be completely discharged, resulting in sulphation on the cell plates.
Compared with a battery discharged under normat conditions, the current flow in a "sulphated" battery is not as smooth although its voltage is bigh during the initial stage of charging, as shown in the figure at the left.

SPECIFIC GRAVITY CHECK

1. Read hydrometer and thermometer indications at eye level.

- When electrolyte level is too low, tilt battery case to raise it for easy measurement.

2. Convert into specitic gravity at $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$.

Example:

- When electrolyte temperature is $35^{\circ} \mathrm{C}\left(95^{\circ} \mathrm{F}\right)$ and specific gravity of electrofyte is 1.230 , converted specific gravity at $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$ is 1.240 .
- When electrolyte temperature is $0^{\circ} \mathrm{C}\left\{32^{\circ} \mathrm{F}\right\}$ and specific gravity of electrolyte is 1.210 , converted specific gravity at $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$ is L .196.

How to Handle Battery (Cont'd)

BATTERY

Battery Test and Charging Chart

[^15]

- Check bittery type and chatrmine the apecitied cturrent wing the followiag rabte.

Fig. 1 DISCMARGING CUFRENY (Lowd tetter)

Type	Currunt (A)
28819R(L)	90
34819F(L)	99
46924R(L)	134
S5824if(835
50023 Ff	150
55023RILI	180
65026\% (L)	195
80086\%	195
75031R(L)	210
95031R\{ ${ }^{\text {S }}$	240
	300
	330

BATTERY

Battery Test and Charging Chart (Cont'd)

A: SLOW CHARGE

Fig. 2 INITIAL CHARGING CURRENT SETTING tSlow chargil

					$\begin{aligned} & \frac{3}{5} \\ & \frac{\alpha}{2} \\ & 0 \\ & 0 \end{aligned}$		
8***W 1.100	$\begin{aligned} & 4.0 \\ & \text { (A) } \end{aligned}$	$\begin{aligned} & 5.0 \\ & \|A\| \end{aligned}$	$\begin{aligned} & 7.0 \\ & (\mathrm{~A}) \end{aligned}$	$\begin{aligned} & 8.0 \\ & \text { (A) } \end{aligned}$	$\begin{aligned} & 9.0 \\ & \|A\| \end{aligned}$	$\begin{aligned} & 100 \\ & \text { (A) } \end{aligned}$	$\begin{aligned} & 14.0 \\ & (A) \end{aligned}$

- Cluck butztry type and determine the apecifion ourrient uping the table shown above.
- Afterr startixg cheging, adjustinamt of cherging aurrent is not nectesery.

CHECKING SPECIFIC GRAVITY
Refer to "Speeific Gravity Check".

Fig. 3 ADDITIONAL CHARGE (SION change)

Above 1.240

CAUTION:

a. Set charging current to value specilied in Fig. 2. If charger is not capable of producing specified current value, sut its cherging current as close to that value as possible.
b. Keop bettery awhy from open fieme while it is being churged.
c. When connecting charger, connect ledsls first, then turn on charger. Do not turn on charger first, as this may cance a sperik.
d. If battery temperature rises above $60^{\circ} \mathrm{C}$ ($140^{\circ} \mathrm{F}$), stop charging. Always charge bettery when its temperature is below $60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$.

BATTERY

Battery Test and Charging Chart (Cont'd)

B: STANDARD CHARGE

CAUTION:

a. Do not use standard charge method on a bettery whose apecific pravity is leas than $\mathbf{1 . 1 0 0}$.
b. Set charping current to value specified in Fig. 4. If charger is not eepable of producing specified current value, set its charging current as close to that value as postrible.
c. Keep battery away from open tlame while it is being charged.
d. When connecting charger, connect leads first, then turn on charger. Do not turn on charger first, as this may ctuse a spark.
4. If battery temperatare rises above $60^{\circ} \mathrm{C}\left\{140^{\circ} \mathrm{F}\right\}$, stop charging. Always charge battery when its temperature is betow $60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$.

BATTERY

Battery Test and Charging Chart (Cont'd)

C: QUICK CHARGE

Fig. 6 INITIAL CHARGING CURAENT SETTING AND CHARGING TINE \{Ouick sharge)

- Check battery type and determine the specified current using the table showst above.
- After starting charging. abjustment of charging current is not necessery.

CAUTION:

a. Do not use quick charge method on a battery whose specific gravity is less than $\mathbf{1 . 1 0 0}$.
b. Set initial charging current to value specified in Fig. 6. If chargar is not capable of producing specified current value, set its charging cursent as close to that value as possible.
c. Keep battery away from open flame while it is boing charged.
d. When connecting charger, connect leads first, then turn on charger. Do not turn on charger first, at this may cause a spark.
6. Be careful of a rise in battery temperature because a large current flow is reguired during quick-charge operation.
If battery temperature rises above $60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$, stop charging. Always charge battery when its temperature is below $60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$.
f. Do not exceed the charging time specified in Fig. 6, because charging battery over the charging time can cause deterioration of the battery.

Service Data and Specifications (S.D.S.)

	Australia	Europe	
Applied model	All	M/T	A/T
Type	55D23L	65 D 26 L	B0D26L
Capacity $V-\mathrm{AH}$	$12-60$	$12-65$	

Wiring Diagram

EL-18

Construction

M2T25281

Unit: man (in)
© : N.m $\mathfrak{f k g}-\mathrm{m}, \mathrm{ft}-\mathrm{lb})$
Fin (i) : Hightemperature grease poift

5ELa38N

INSTALLATION

- Installation procedure is in reverse order of removal.

Magnetic Switch Check

- Before starting to check, disconnect battery ground cabie.
- Disconnect "M" terminal of starter motor.

1. Continuity test (between " S " terminal and switch body).

- No continuity ... Replace.

2. Continuity test (between " S " terminal and " M " terminal).

- No continuity ... Replace.

Pinion/Clutch Check

1. Inspect pinion teeth.

- Replace pinion if teeth are worn or damaged. (Also check condition of ring gear teeth.)

2. Check to see if pinion locks in one direction and rotates smoothly in the opposite direction.

- If it does not lock (or locks) in either direction or unusual resistance is evident ... Replace.

3. Inspect reduction gear teeth.

- Replace reduction gear if teeth are worn or damaged. (Also check condition of armature shaft gear teeth.)

Brush Check

BRUSH

Check brush for wear.

Wear limit length:

Refer to S.D.S.

- Excessive wear ... Replace.

BRUSH SPRING PRESSURE

Check brush spring pressure with brush spring detached from brush.

Spring pressure (with new brush):

Refer to S.D.S.

- Not within the specified values ... Replace.

BRUSH HOLDER

1. Perform insulation test between brush holder (positive side) and its base (negative side).

- Continuity exists Replace.

2. Check brushes to see it they move smoothly,

- If brush holder is bent, replace it; if surfaces of brush holder and base are dirty, clean them.

Field Coil Check

1. Continuity test (between field coil positive terminal and positive brushes).

- No continuity ... Replace yoke.

2. Insulation test (between field coil positive terminal and yoke).

- Continuity exists Replace yoke.

Armature Check

1. Continuity test (between two segments side by side)

- No continuity ... Replace.

Armature Check (Cont'd)

2. Insulation test (between each commutator bar and shaft).

- Continuity exists Replace.

3. Check commutator surface.

- Rough ... Sand lightly with No. 500-600 sandpaper.

4. Check diameter of commutator.

Commutator minimum diameter:

Reter to S.D.S.

- Less than specified value ... Replace.

5. Check depth of insulating mold from commutator surface.

- Less than $0.2 \mathrm{~mm}(0.008 \mathrm{in})$... Undercut to 0.5 to 0.8 mm (0.020 to0.031 in)

Reassembly

Carefully observe the following instructions.
a. Apply grease to:

- Rear cover metal
- Gear case metal
- Frictional surface of pinion
- Moving portion of shift lever
- Plunger of magnetic switch
b. Atter assembling gear case, pinion assembly, idler gear, adjusting washers and center bracket, turn idfer gear with your hand in axial direction and adjust end play to the 0.1 to 0.5 mm (0.004 to 0.020 in) range using adjusting washer(s).
c. Check pinion to see in its engagement length is correct.

Measure difference in height " ε " of pinion assembly front edge when pinion assembly is forced out by the magnetic switch and then when it is pulled out by hand.

Difference " ℓ ": 0.3-2.0 mm(0.012-0.079 in)

- Not in the specified value ... Adjust by adjusting plate.

Service Data and Specifications (S.D.S.)
STARTER

Type			M2T25281
			Reduction gear
System voltage V			12
No-toad	Terminal voita	V	11.0
	Current	A	70
	Revolution	rpm	More than 2,000
Minimum length of brush		mm (in)	11.5 (0.453)
Brush spring tension (With new brush)		N (kg. ${ }^{\text {b }}$)	$\begin{gathered} 13.7-25.5 \\ (1.4 \times 2.6,3.1 \times 5.7) \end{gathered}$
Minimum	lameter of com	tor mm (im)	31.4 (1.236)
Dititerence" ℓ " in height of pinion assembly		men (if)	$\begin{gathered} 0.3-2.0 \\ (0.012-0.079) \end{gathered}$

Wiring Diagram

Trouble-shooting

Before conducting an alternator test, make sure that the battery is fully charged. A 30 -volt voltmeter and suitable test probes are necessary for the test. The alternator can be checked easily by referring to the inspection Table.
Before starting trouble-shooting, inspect the fusible link.

WITH IC REGULATOR

2) Light : Charge warning light
A.C.G. : Atternstor parts oxcept IC regulator

ICRG : IC reguletor
Make sure canfector
(S, L) is connectect correctly.

Construction

*Rear bearing CAUTION:

Rear cover may be hard to remove because a ring is used to lock outer race of rear bearing. Be careful not to lose this ring during removal.

6. Remove alternator fixing bolt and take out alternator as shown in the figure.

INSTALLATION

- Installation procedure is in reverse order of removal.

Disassembly

CAUTION:

Rear cover may be hard to remove because a ring is used to lock outer race of rear bearing. To facilitate removal of rear cover, heat just bearing box section with a 200 W soldering iron. Do not use a heat gun, as it can damage diode assembly.

Rotor Slip Ring Check

1. Continuity test

- No continuity ... Replace rotor.

2. Insulator test

- Continuity exists ... Replace rotor.

3. Check slip ring for wear.

Slip ring minimum outer diameter:
Refer to S.D.S.

Brush Check

1. Check smooth movement of brush.

- Not smooth ... Check brush holder and clean.

2. Check brush for wear.

- Replace brush if it is worn down to the limit line.

3. Check brush lead wire for damage.

- Damaged ... Replace.

4. Check brush spring pressure with brush projected approximately 2 mon(0.08 in) from brush holder.

Spring pressure:
Reler to S.D.S.

- Not within the specified values ... Replace.

Stator Check

To test the stator or diode, you must separate them by unsoldering the connecting wires.
CAUTION:
Use only as much heat as required to melt solder. Otherwise, diodes will be damaged by excessive heat.

1. Continuity test

- No continuity ... Replace stator.

2. Ground test

- Continuity exists ... Replace stator.

Diode Check

MAIN DIODES

- Use an ohmmeter to check condition of diodes as indicated in chart below.
- If any of the test results is not satisfactory, replace diode assembly.

	Ohmmeter probes		Continuity
	Positive \dagger	Negative $($	
	Positive diode plate	Diode terminals	Yes
	Diode terminals	Positive diode plate	No
Dlodes check (Negative side)	Negative diode plate	Diode terminals	No
(edes frek (Negaive side)	Diode ferminals	Negative diode plate	Yes

[HITACHI make]
[MITSUBISHI make]

SELTEBD

SEL493H:

SUB-DIODES

- Attach ohmmeter's probe to each end of diode to check for continuity.
- Continuity is N.G Replace diode assembly.

Assembly

Carefully observe the following instructions.

- When soldering each stator coil lead wire to diode assembly terminal,carry out the operation as fast as possible.

WHEN SOLDERING BRUSH LEAD WIRE [MITSUBISHI make]

- Position brush so that its wear limit line protrudes 2 mm (0.08 in) beyond end face of brush holder.

[HITACHI make]

(1) Position brush so that it extends 10.5 to 11.5 mm (0.413 to 0.453 in) from brush holder.
(2) Coll lead wire 1.5 times around terminal groove. Solder outside of terminal.
When soldering, be careful not to let solder adhere to insulating tube as it will weaken the fube and cause it to break.

RING FITTING IN REAR BEARING [HITACHI make]

- Fix ring into groove in rear bearing so that it is as close to the adjacent area as possible.

[MITSUBISHI make]

- Always press new bearing into place with ring groove toward slip ring,

Assembly (Cont'd)

REAR COVER INSTALLATION

(1) Before installing front cover with pulley and rotor with rear cover, push brush up with fingers and retain brush by inserting brush lift wire into brush lift hole from outside.
(2) After installing front and rear sides of alternator, pull out brush lift wire.

Service Data and Specifications (S.D.S.)

ALTERNATOR

Type	LR180-724	A3T05192
	HITACHI make	MiTSURISHI make
Applied model	Australia	Europe
Nominal rating V-A	12-80	12-90
Ground polarity	Negative	
Minimum revolution under no-load (when 13.5 volts is applied)	Less than 950	Less than 1,300
Hot output current A/rpm	More than $65 / 2,500$ More than $80 / 5,000$	More than 85/2,500 More than $90 / 5,000$
Regulated output voltage V	14.1-14.7	
Minimam tength of brush mm (in)	More than $7.0(0.276)$	More than 8.0 (0.315)
Brush spring pressure $\mathrm{N}(\mathrm{g}$, Oz)	1.863 - $3.040(190-310,6.70-10.93)$	$3.040-4.217(310 \times 430,10.93-15.17)$
Slip ring minimum outer olameter mm (in)	More than 30.6 (1.205)	More than22.1 (0.870)

Combination Switch/Check

Combination Swltch/Replacement

- Each switch can be replaced without removing combination switch base.
- To remove combination switch base, remove base attaching screw and turn after pushing on it.

Steering Switch/Check

Turbo model

A.S.C.D. STEERING SWWTCH					
	FESLはMも ACCt.	N	SET CDA5F	OFF	GANCEL
1	\square		0		O
2			0		()
3	B				(1)

Check

HAZARD

SWITCH
Nowren
1
2

REAR WIPER SWITCH

	N+5t	orfow	masen
20	Q	$\bigcirc 0$	O
21		0	
22			\bigcirc
23	0	O	O8

SWITCH

Without daytime light system?

[With daytime fight systemb

ILLUMANATION CONFFOL SWITTCH

	V	N	A
20			0
21	0		7
12	0		0

REAR DEFOGGER SWITCH

	OFF	
11	ON	
12		0
		6
$\# 3$		0

C.USTEA ILLUM\#NATION

Schematic (Models without daytime light system and dim-dip lamp system)

Operation (Models equipped with daytime light system)

After starting the engine with the lighting switch in the "OFF" position, the headlamp low beam and clearance, tail, license and instrument illumination lamps automatically turn on. Lighting switch operations other than the above are the same as conventional light systems.

Engine		With engine stopped									With engine runring								
Lighting switch		OFF			1ST			2NO			OFF			ist			2NO		
		A	B	C	A	B	c	A	B	C	A	B	c	A	B	C	A	S	C
Headlamp	Hign beam	x	\times	0	x	X	0	0	X	0	x	\times	0	x	X	0	0	X	0
	Low beam	x	x	X	X	X	X	X	0	X	0	0	0	x	X	\times	\times	0	x
Clearance and tail lamp		\times	x	X	0	0	0	0	0	0	\bigcirc	0	0	0	0	0	0	0	0
License and instrument illumination lafp		X	X	X	0	0	0	0	0	0	0	\bigcirc	0	0	0	0	0	\bigcirc	0
0 : Lamp "ON" X : Lamp "OFF" 玉 : Added functions																			

Schematic (Models equipped with daytime light system)

Wiring Diagram (Models equipped with daytime light system)

Operation (Models equipped with dim-dip lamp)

When ignition switch is in the "ON" position with the lighting switch in the "1ST"' position, the headiamp low beam comes on dimly to function as a clearance lamp. Lighting switch opera* tions other than the above are the same as conventional light systems.

Ignition sw		OFF or ACC									ON								
Lighting switch		OFF			1ST			2ND			OFF			1ST			2ND		
		A	B	C	A	B	C	A	B	C	A	B	C	A	B	c	A	B	c
Headlamp	High beam	\times	\times	0	X	X	0	0	X	\bigcirc	x	X	0	X	X	0	\bigcirc	X	0
	Low beam	X	X	x	X	x	X	X	0	X	X	X	X	X	x	X	X	0	x
	Oim-dip (Low beam)	X	X	X	X	X	X	x	X	X	X	X	x	0	0	X	x	x	x
Clearance, tait, license and illumination lamps		X	X	X	0	0	0	0	0	0	X	X	x	0	0	0	0	0	0

O : Lamp "ON"
X : Lamp "OFF"

- : Added functions

Schematic (Models equipped with dim-dip lamp)

Wiring Diagram (Models equipped with dim-dip lamp)

Description

- The vertical direction of the headlamp projection can be adjusted from inside the vehicle to prevent the headlight beam axis from facing upward due to a change in the number of occupants and load conditions in the vehicle.

Description (Cont'd)

Aiming switch " 0 " \rightarrow " 1 "

- When the aiming switch is moved from " 0 " to " 11 ", power is applied to the motor through the relay operated by the sensor's conductive section. The headlamps will then move in the "DOWN" direction.
- The motor continues to rotate while the rotary unit of the sensor moves from point A to point B.
- The power terminals will then be positioned at the nonconductive section, disconnecting the power to the motor. Then motor then stops.

Aiming switch " 1 " \rightarrow " 0 "

- When the aiming switch is moved from " 1 " to " 0 ", power is applied to the motor through the relay operated by the conductive section of the sensor. The motor will rotate to move the headlamps in the "UP" direction.
- When the rotary unit of the sensor moves from point B to point A, the motor will stop.

Schematic

SE1.323P

Bulb Replacement

The headlamp is a semi-sealed beam type which uses a replaceable halogen bulb. The bulb can be replaced from the engine compartment side without removing the headlamp body.

- Grasp only the plastic base when handling the bulb. Nevar touch the glass envelope.

1. Discomect the battery cable.
2. Disconnect harness connector from rear end of buib. (Inner)
3. Turn bulb cover counterclockwise, then remove it.
4. Pull off rubber cap.
5. Push and turn retaining pin to loosen it.
6. Remove headlamp buib. Do not shake or rotate bulb when removing it.
7. Disconnect harness connector. (Outer)
8. Install in the reverse order of removal.

CAUTION:

- Do not leave the bulb out of the headlamp reflector for a long period of time as dust, moisture, smoke, etc. may enter the headiamp body and affect the performance of the headlamp. Thus, the headlamp bulb should not be removed from the headlamp reflector until just before a replacement bulb is to be installed.
- Use the same wattage as originally installed:

	Inside (High beam)	Outside (Low beam)
Wattage (W)	55	55

Aiming Adjustment

When performing headlamp aiming adjustment, use an aiming machine, aiming wall screen or headlamp tester. For operating instructions of any aimer, it should be in good repair, calibrated and used according to respective operation manuals supplied with the unit.
If any aimer is not available, aiming adjustment can be done as follows:
For detalis, refer to the regulations in your own country.
CAUTION:
a. Keep all tires inflated to correct pressures.
b. Place vehicle and tester on one and same flat surface.
c. See that there is no-ioad in vehicle (coolant, engine oll filied up to correct level and full fuel tank) other than the driver (or equivalent weight placed in driver's position).

LOW BEAM

1. Turn headlamp low beam on.
2. Use adiusting screws to pertorm aiming adjustment.

- First tighten the adjusting screw all the way and then make adjustment by loosening the screw.
a. Adjust headlamps so that main axis of ight is parallel to center line of body and is aligned with point P shown in illustration.
b. Figure to the feft shows headlamp aiming pattern for driving on right side of road; for driving on left side of road, aiming pattern is reversed.
c. Dotted lines in tlustration show center of headiamp.
"H": Horizontal center line of headiamps
"W,": Distance between each headlamp centef

"C": 50 mm (1.97 in)

Aiming Adjustment (Cont'd)

CAUTION:

Be sure aiming switch is set to " 0 " when performing aiming adjustment on vehicles equipped with headlamp aiming control.

HIGH BEAM

Turn headlamp high beam on.
a. Adjust high beams so that main axis of light is parallel to center line of body.
b. Dotted lines in Hustration show center of headlamp.
"H": Horlzontal center line of headiamps
"W"': Distance between each headlamp center
"L": $\quad 5,000 \mathrm{~mm}(196.85 \mathrm{in})$

Clearance, License, Tail and Stop Lamps/Wiring Diagram

L.H. DRIVE MODELS

R.H. DRIVE MODELS

EXTERIOR LAMP

Back-up Lamp/Wiring Diagram

Turn Signal and Hazard Warning Lamps/Wiring Diagram

SEL $327 F$

EXTERIOR LAMP

Rear Fog Lamp/Wiring Diagram

Tail Lamp

1. Start engine.
2. Lighting switch on.

Combination Flasher Unit Check

- Before checking, ensure that bulbs meet specifications.
- Connect a battery and test lamp to the combination flasher unit, as shown. Combination flasher unit is properly functioning if it blinks when power is supplied to the circuit.

Bulb Specifications

	Wattage (W)
Front combination lamp	
Turn signa:	21
Clearance	5
Side turn signal lamp	5
Rear combination lamp	
Turn signal	21
Stop/Tail	$21 / 5$
Back-up lamp	21
License plate lamp	5
Pear fog lamp	21
High-mounted stop lamp	13
Interior lamp	10
Spot lamp	3.8
Luggage room lamp	3.4

Illumination/Wirlng Diagram

L.H. DRIVE MODELS

Illumination/Wiring Diagram (Cont'd)

R.H. DRIVE MODELS

Interior Lamp/Wiring Diagram

SEL 330 F

Combination Meter

EL-65

Tachometer, Temp., Olf, Fuel and Boost
Gauges/Wiring Diagram

Inspection/Fuel, Oll Pressure and Water Temperature Gauges

Fuel Tank Gauge Unit Check

- For removal, refer to FE section.

Check the resistance between terminals (G) and (E).

Ohmmeter		Float position mm (in)			Fesistance value (3)
(1)	(-)				
G	E	\dagger^{*}	F(t)	$27.0(0.827)$	4.3-5.8
		2^{*}	1/2	175.0 (4.53)	27.7-34.3
		$3 *$	Empty	207.0 (6.15)	78.3-84.8

1^{*} and 3^{*} : When foat rod is in contact with stopper.

Fuel Warning Lamp Sensor Check

- It will take a shors time for the bulb to light.

Thermal Transmitter Check

Check the resistance between the terminals of thermal transmitter and body ground.

Water temperature	Resistance
$60^{\circ} C\left(140^{\circ} \mathrm{F}\right)$	Approx. $70-90 \Omega$
$100^{3} \mathrm{C}\left(212^{\circ} \mathrm{F}\right)$	Approx. $21-24 \Omega$

Oil Pressure Sending Unit Check

Check the resistance between the terminals of oil pressure sending unit and body ground.

Oil pressure $\mathrm{kPa}\left(\mathrm{bar}, \mathrm{kg} / \mathrm{cm}^{2}, \mathrm{ps}\right)$	Resistance value (Ω)
$0(0,0,0)($ Engine is stopped $)$	More than 54
$392(3.9,4,57)$	Approx. $26-37$
$588(5.9,8,85)$	Approx. $18-26$

Boost Sensor Check

1. Connect vacuum pump gauge to boost sensor vacuum hose.
2. Disconnect harness connector from boost sensor and connect battery and voltmeter as shown.
3. Apply vacuum pressure to boost sensor by vacuum pump gauge and measure voltages.

Voltage:

Approx. 2.2V at 0 kPa ($0 \mathrm{mbar}, 0 \mathrm{mmHg}, 0 \mathrm{inHg}$) (Atmospheric pressure)
Approx. 1.3V at $-53.3 \mathrm{kPa}(-533$ mbar, -400 $\mathrm{mmHg},-15.75 \mathrm{inHg}$)

Speed Sensor Signal Check

1. Remove speed sensor from transmission.
2. Turn speedometer pinion quickly and measure voltage across (a) and (b).

Warning Lamps/Schematic

EL-70

WARNING LAMPS AND CHIME

Warning Lamps/Wiring Diagram

L.H. DRIVE MODELS

EL-71

WARNING LAMPS AND CHIME

Warning Lamps/Wiring Dlagram (Cont'd)
R.H. DRIVE MODELS
TRANSMISSKON OL
TEMPERATJRE (13) (33)

Warning Chime/Wiring Diagram

Dlode Check

- Check continuity using an ohmmeter.
- Diode is functioning properly if test results are as shown in the figure at left.
- Diodes for warning lamps are built into the combination meter printed circuit.

Warning Chime Check

Wiring Diagram

L.H. DRIVE MODELS

Wiring Diagram (Cont'd)

R.H. DRIVE MODELS

Description

FUNCTION

- Time control unit has the following functions.

Item		Details of control
\dagger	Intermittent wiper controt	Regulates intermittent time from approximately 3 to 23 seconds depending on the intermittent wiper volume setting.
2	Washer and wiper combination control Headlamp washer control	Wiper is operated in conjunction with washer switch. Headiamp washer is operated for about 7 seconds when headiamp washer switch is turned "ON".
3	Illumination control	Regulates brightness of illumination in 16 stages depending on the iflumination control switch setting.
4	Light warring chime timer	When driver's door is opened with light switch "ON' and ignition switch'OFF', waming chime sounds.

OPERATING CONDITIONS

Input signal		Power source from battery	Ignition switch	Light switch	Wiper switch "NT"	Washer switch	Driver's side door switch ${ }^{*} 1$	Allumination control switch
		(9)	(2) or (3)	(b)	(6)	(3)	(18)	(7) or (3)
Intermitent wiper control	(1)	ON	ACC or ON		ON			
Washer and wiper combination controt Headlamp washer control	(13)	ON	ACC or ON			ON		
Alumination control	(11)	ON		ON				ON
Light warning chime timer	(9)	ON	OFF or ACC	ON			ON	

"1: Door switch is turned "ON" when door is opened.

Trouble-diagnosis

Symptom		DIAGNOSTIC PROCEDURE
Wiper \& washer	Intermittent wiper does not operate.	1
	Intermittent time of wiper cannot be adjusted.	2
	Wiper and washer activate individually but not in combination.	3
Ilumination	Illumination control system does not actuate.	4
Warning	light warning chime does not activate.	5

TIME CONTROL SYSTEM

Trouble-diagnosis (Cont'd)

PREPARATION FOR TROUBLE-DIAGNOSIS

1. Remove lower trim.
2. Remove time control unit with harness connected.

POWER SUPPLY CIRCUIT CHECK

1. Connect ohmmeter from harness side.
2. Check continuity between ferminal (16) and body ground.

Onmmeter terminals		Continuity
$(+)$	$(-)$	
(6)	Body ground	Yes

3. Connect voltmeter from harness side.
4. Measure voltage across terminal (15) and terminals (2), (5) or (9).

(5), (5)or (2)

Votrmeter terminats		Ignition switct position		
$(+)$	$(-)$	OFF	ACC	ON
(9)	(15)	Approx. 12V	Approx. 12V	Approx. 12V
(5)	(13)	OV	OV	Approx. 12V
(2)	(15)	OV	Approx. 12V	Approx. 12V

TIME CONTROL SYSTEM

Trouble-diagnosis (Cont'd)

A T.C.U. OUTPUT FOR WIPER RELAY CARCUIT CHECK
Measure voltage across (1) and (1).

DIAGNOSTIC PROCEDURE-1

Intermittent wiper does not operate.

DIAGNOSTIC PROCEDURE-2

A Intermittent time of wiper cannot be adjusted.

Check iffermittent wiper volume O.K. $\sqrt{\text { Peplace T.C.U. }}$
circuit.

Trouble-diagnosis (Cont'd)
 DIAGNOSTIC PROCEDURE-3

Wiper and washer activate individually but not in combination.

A TIC.U. OUTPUT FOR LEGHT SWITCH C!PCUT CHECK

ILLIARNATION CONTROL CIPRCUTT CHECK

Dimanomer			
+1	1-1	OARE	Batekiv
(0)	0	On	Elarapt 0 \%
(\%)	6	Encept mon	94

DIAGNOSTIC PROCEDURE-4

Illumination control system does not actuate.

A

 Check for loose harness connector.

Check illumination control switch.

TIME CONTROL SYSTEM

Trouble-diagnosis (Cont'd)
 diAgnostic Procedure- 5

Light waming chime does not activate.

Front Wiper and Washer/Wiring Diagram

Rear Wiper and Washer/WIring Dlagram

Headiamp Washer/Wiring Diagram

L.H. DRIVE MODELS

EL-85

Headlamp Washer/Wiring Diagram (Cont'd)
R.H. DRIVE MODELS

Installation

1. Prior to wiper arm installation, turn "ON" wiper switch to operate wiper motor and then turn it "OFF" (Auto Stop).
2. Lift the blade up and then set it down onto glass surface to set the blade center to clearance " C " or "D" immediately before tightening nut.
3. Eject washer fluid. Turn "ON" wiper switch to operate wiper motor and then turn it "OFF".
4. Ensure that wiper blades stop within clearance " C " or " D ". Clearance " C ": 0-10 mm (0-0.39 in) Clearance ' D ": 73-88 mm (2.87-3.46 in)

- Tighten windshield wiper arm nuts to specified torque.

Front wiper:
人) 26-32 N•m (2.7-3.3 kg-m, 20-24 th-lb)
Rear wiper:
(1) $13-18 \mathrm{~N} \cdot \mathrm{~m}(1.3-1.8 \mathrm{~kg}-\mathrm{m}, 9-13 \mathrm{ft}-\mathrm{lb})$

- Before reinstalling wiper arm, ciean up the pivot area as illustrated. This will reduce possibility of wiper arm looseness.

Washer Nozzle Adjustment

- Adjust washer nozzle with a suitable tool as shown in the figure at lett.
Before attempting to turn the nozzle, gently tap the end of the tool to free the nozzie. This will prevent "rounding out" the small female square in the center of the nozzie.

Check Valve

- A check valve is provided in the washer fluid ife. Be careful not to connect check valve to washer tube in the wrong direction.

Wiper Amplifier Check

1. Connect as shown in the figure at left.
2. If test lamp comes on when connected to terminal (6) and battery ground, wiper relay is normal.

Wiring Diagram

Wiring Dlagram

Filament Repair

REPAIR EQUIPMENT

1. Conductive silver composition (Dupont No. 4817 or equivalent)
2. Ruler $30 \mathrm{~cm}(11.8 \mathrm{in})$ long
3. Drawing pen
4. Heat gun
5. Alcohol
6. Cloth

REAR WINDOW DEFOGGER

Filament Repair (Cont'd)

repairing procedure

1. Wipe broken heat wire and its surrounding area clean with a cloth dampened in alcohol.
2. Apply a small amount of conductive silver composition to tip of drawing pen.
Shake silver composition container before use.
3. Place ruter on glass along broken line. Deposit conductive silver composition on break with drawing pen. Slightly overlap existing heat wire on both sides [preferably 5 mm (0.20 in)) of the break.
4. After repair has been completed, check repaired wire for continuity. This check should be conducted 10 minutes after silver composition is deposited.
Do not touch repaired area while test is being conducted.
5. Apply a constant stream of hot air directly to the repaired area for approximately 20 minutes with a heat gun. A minimum distance of $3 \mathrm{~cm}(1.2 \mathrm{in})$ should be kept between repaired area and hot air outlet. If a heat gun is not available, let the repaired area dry for 24 hours.

AUDIO AND POWER ANTENNA

SEATMSP

Radio

ANTI-THEFT SYSTEM

By using a personal 4-digit code known only to the vehicle owner, the possibility of the audio unit being stolen is effectively reduced, because without the code the unit can not be activated. When in normal use, the unit is unlocked and accessible in the usual way.
If however, someone attempts to remove the unit or the ground cable is disconnected from the battery, the Anti-theft system activates and the unit "locks". The only way it can be unlocked is by entering a personal code number known only by the owner.

UNLOCKING THE UNIT (How to enter a personal code number)

Use the following procedures to enter a personal code number into the radio.

1. Turn ignition switch to " ACC " or " ON ".
2. Turn SW. VOL knob to "ON" and "i-Wot" will appear on the display.
3. Press any button (except "eject") and "ctog" will appear on the display.
4. Enter a personal code number by pressing station select buttons $1,2,3,4$ the required number of times to display the code.
5. Press \qquad to enter the code. Unit is unlocked and the radio/cassette will operate. If the wrong code number is entered, the display shows "" $-\cdots . "$. Wait ten seconds then enter the correct code.

CAUTION:

There are two ten second waiting periods after a wrong code number has been entered. There then follows twenty waiting periods of fifteen minutes duration.
After that, if wrong code is entered, the unit will tock permanently.

Power Antenna/Wiring Diagram

Location of Antenna

Antenna Rod Replacement

 removal1. Remove antenna nut and antenna base.

Antenna Rod Replacement (Cont'd)

2. Withdraw antenna rod while raising it by operating antenna motor.

INSTALLATION

1. Lower antenna rod by operating antenna motor.
2. Insert gear section of antenna rope into place with it facing toward antenna motor.
3. As soon as antenna rope is wound on antenna motor, stop antenna motor. Insert antenna rod lower end into antenna motor pipe.
4. Retract antenna rod completely by operating antenna mow tor.
5. Install antenna nut and base.

Radio Fuse Check

Radio Rear Amplifier Check

Window Antenna Repair

ELEMENT CHECK

1. Attach probe circuit tester (in ohm range) to antenna terminal on each side.
2. If an element is broken, no continuity will exist.
3. To locate broken point, move probe to left and right along element to determine point where tester needle swings abruptly.

ELEMENT REPAIR

Refer to REAR WINDOW DEFOGGER "Filament Repair".

AUTOMATIC SPEED CONTROL DEVICE (A.S.C.D.)

Wiring Diagram

L.H. DRIVE MODELS

Wiring Diagram (Cont'd)

R.H. DRIVE MODELS

SE 2350 F

A.S.C.D. Wire Adjustment

CAUTION:

- Be careful not to twist A.S.C.D. wire when removing it.
- Do not tense A.S.C.D. wire excessively during adjustment.

After confirming that accelerator wire is properly adjusted, adjust the tension of A.S.C.D. wire in the following manner.
(1) After adjusting the length of the accelerator wire, turn a securing nut by $1 / 2$ to 1 turn from throttle open starting position to the wire loosening direction to fix. (Must be securing carried out to prevent response delay of operation of the A.S.C.D.)
(2) Securely tighten lock nut to hold adjusting nut in place.

- For A.S.C.D. stop switch and clutch switch adjustment, refer to BR and CL sections.

Trouble Diagnoses

Symptom	DIAGNOSTIC PROCEDURE
A.S.C.D. control unit cannot be set properly.	$\mathbf{1}$
Resume switch will not operate.	
Cancel switch will not operate.	2
Engine hunts.	
farge difference between set vehicle speed and actual speed.	3
Set speed cannot be canceled.	4

PREPARATION FOR TROUBLE-DIAGNOSIS

1. Remove lower trim.
2. Remove A.S.C.D. control unit with harness connected.
3. Perform check from harness side using circuit tester, with harness connector connected.

GROUND CIRCUIT CHECK

- Check continuity between (3) and body ground.

AUTOMATIC SPEED CONTROL DEVICE (A.S.C.D.)

Trouble Diagnoses (Cont'd)

POWER SUPFLY CIRCUIT CHECK

1. Turn A.S.C.D. mein switch to "ON".
2. Check voltage botweon (4) and (3)

Voltmeter
CUT OFF CIRCUIT CHECX

1. Stap on brake pedal.
2. Tum ASSC.D. main swites to "ON".
3. Check voltage between (1) and (3).

SEL629:

SET SWITCH CIRCUIT CHECK

1. Push A.S.C.D. set qwitch.
2. Check voltage between (2) and (3) .

SPEED SENSOR CIRCUIT CHECK

1. Disconnect speed sensor from tranmission.
2. Connect a voltmeter between (7) and (3).
3. Stowky turn speed sensor by hand to make sure voltrieter poifiter deflects.

- Vodtumeter pointar deffets twipe per rotetion of pinion.

DIAGNOSTIC PROCEDURE-1

A.S.C.D. control unit cannot be set properly.

Check cut-of circuit for A.S.C.D. control unit.

Check A.S.C.D. set switch circuit for A.S.C.D. control unt.

Check speed sensor and har ness between A.S.C.D. control unit and speed sensor signal output terminal of combination meter

Replace actuator. tor Check".

Replace A.S.C.D. control unit.

AUTOMATIC SPEED CONTROL DEVICE (A.S.C.D.)

Trouble Diagnoses (Cont'd)

PRESURE SWHTCH AI RCLIT CHECK

1. Tutn remurne switch to "OA"
2. Chack vaituge between (1) and (3).

CANCEL SWITCH CIREUIT CHECK

1. Turn cences awiteh to ${ }^{+} \mathrm{ON}^{* *}$.

2, Check voltage betwerin (2) and (3) or (1) and (3).

Voltmetur

DIAGNOSTIC PROCEDURE-3
Cancel switch will not operate.

Trouble Diagnoses (Cont'd)

DIAGNOSTIC PROCEDURE-4

Engine hunts.

DIAGNOSTIC PROCEDURE-5

Large difference between set vehicle speed and actual speed.

Trouble Diagnoses (Cont'd)

DIAGNOSTIC PROCEDURE-6

Set speed cannot be canceled.

1. Turn A.S.C.D. main switch to "ON".
2. Turn A.S.C.D. main switeh to "ON"* again.
3. Step on brake pedai.
4. Step on clutch pedal (M/T) or thift in "N" fange (A / T).
5. Check voltage between (3) and (3).

STOP LAAP CIRCUIT CHECK

1. Step on brake pedal.
2. Check voltage between (i) and (3),

O.D. CANCEL CIBCUIT CHECK FOR A.S.C.D. CONTROE UNIT
3. Turn O.D. coatrol switch to "ON"
4. Measure veltage atros (12) and (3).

DIAGNOSTIC PROCEDURE-7

AIT model only:

- When A.S.C.D. is set while vehicle is operating in "O.D." range,O.D. will be canceled and shifting to O.D. cannot be made thereafter.
- O.D. will not be canceled even if actual vehicle speed is 6 km / h (4 MPH) lower than set speed. (Set speed cannot be maintained.)
- O.D. will not be canceled even it accelerator switch is turned "ON".

Engine Compartment

L.H. DRIVE MODELS

5 E .3258
EL-109

Engine Compartment (Cont'd)

R.H. DRIVE MODELS

Melay th fuse box

Passenger Compartment

L.H. DRIVE MODELS

LOCATION OF ELECTRICAL UNITS

Passenger Compartment (Cont'd)

R.H. DRIVE MODELS

Luggage Compartment

Outline

L.H. DRIVE MODELS

Outiline (Cont'd)

R.H. DRIVE MODELS

Main Harness

L.H. DRIVE MODELS

O.D. control switct: A / T illumination $\mid A / T$ model| \mid Cigarette lighter
Ashtray ililuminat Intake door moter (Menuel A/C modell Body ground Heater resistor $\{$ Manual A/C model) Blower relay- 1 (Manuai A/C mods: Slower mozar Gfove box lamp Diode (M/T model) To door tramess R.M. (6109) To engife roofn harness (111)
To engine room harness (e:0g)
 Blower relay- 3 (Manual A / C model) Blower relay-2 (Manual A/C moctel) A.S.C.D. hoid relby
To E.F.I. harness (E2) A.S.C.D. control unit Body ground Clutch switch \{Black)(M/T/ model To door harness :. H. (ai) To door harnest L.H. (D7) Check connector Joint connector Stearing angle sensor-Steerng switch
 Mode door motor (Auto A/C modell To A/C sutb-hamess (Auto A/C madel) A / C control unit (Auto A/C morell To seat subhhasness
Headiamp aiming swith fror West Gerriany) Door micfor control switch
(With headlamp aiming control system)
Intake dioor motor (Auto A/C modei)
Blower control amplifier (Auto A/C model)
Def,duct sensor. To surload sertsor (Auto A/C model) Diode
HICAS control unit
To engine raom harness (iili)
웅 (9) (9)

Main Harness (Cont'd)

R.H. DRIVE MODELS

Main Harness (Cont'd)

Time control unit Fuel pump relay
Body around
To body harness (i2)

Tont

To engine yoom harness (Ha)
Joint connector (Non turbo modely
To engine reom harness (103) (Black) - block

总

Fuse block
To toor hafness R.H. (hiol (For Australia) Diode
Check connector
Combination meter
Combination meter
Lighting switeh-Headiamp wasther switch
Cluster switeh Cluster switch
Cluster switch
Combination flasher unit
Kickdown switch (White)(A/T model)
A.S.C.D.clutch switch \{Bfue)(M/T model\}
Sop 简mp switch (Black)
Steering switeh (Non-turbo madel)
Key hole illumination
A.S.C. D. cancel switch (Blue) Combination meter (Elack) Combination meter (White) Dimmer switch Warning ch imse Warning lamp
Front wiper and wasther switch
Ignision switch
Rear wipar and washar switch
Front wiper and washer switch
Igniston switch
Rear wipar and washar switch
Rear wiper and washar switch Mode door motor (Manual A/C modely A/C control unit (Manuai A/C model) Aif mix actuator (Manual A/C model) A/C switch unit (Manual A/C model) Hazerd wafning switch
Racio and cassette player Racio and cassette player Door mirror control switch

Body Harness

L:H. DRIVE MODEL.S

EL-120
Body harntss

	To engine raom harnest
	Tomain harness (m)
	To main harness (15)
(b)	Fuse bleck
(b)	Fuse block
	Door switch (Driver side)
(17)	Body ground
(3)	Fual pump contual unit
(8)	Foom lamp ralay
(1i)	Diade
(312)	Fuel tank genge unit
(114)	Door switch (Passenger side)
(175)	Fear \$patater R.H.
(6i)	Spet tamp
	Intarior lamp
	To back door harness (1020)
	To back door harness (1820)
(82)	Rear speeker L.H.
	Luggage foom lamp
(120)	Power antenna timer
(13)	Power antenna motar
(15)	To body harness no. 2 (afti)

Diode (810) (840)

R.H. DRIVE MODELS

Body Harness (Cont'd)

	: Pump cancal relay (Black\} \{For Europet
	: Oil cooler relay (Brown) (For Europe)
	: Shock absorber sctuator L.H. (furbo model)
	: Shock absorber controf unit (Turbo modell)
	: HICAS fait-safe sotenoid volve (Turbo model)
	: Differential oil pump \{For Europe)
	: Transmission oil purnp (M/T model for Europe)
	: Differential oil temperature switch (For Europe)
	: Differential oif warning lamp switch (For Europe)
(46)	: In-vehicle serlsor upper.Aspirator m
	\{Auto A / C model\}
	: Speed control armplifier (M/T model for Europe)
	: Shock absorber acturtor R.H. \{Turbe mode!
	: Adadio rear amplifier \{For Europe)

EL-123

Engine Room Harness

L.H. DRIVE MODELS (Engine compartment)

Side turn sigral lamp L.H. Oropping resistor (A/T model) Retay box (Refer to LOCATION OF ELECTRICAI. UNITS. Haadiamp L.H. (Low beam) Headlamp L.H. (High beam) Front combination lamp h.H. Horn-tow To E.F.I, harness (fi3) (White) To E.F.f.tarness (f2)
日erooneopeeee

Engine Room Harness (Cont'd)

R.H. DRIVE MODELS (Engine compartment)

HARNESS LAYOUT
Engine Room Harness (Cont'd)
L.H. DRIVE MODELS (Passenger compartment)

Back Door Harness L.H.

Back Door Harness R.H.

Alternator Harness

Door Harness L.H.

Door Harness R.H.

E.F.I. Harness (Cont'd)

R.H. DRIVE MODELS (Passenger compartment)

NISSAN 300ZX(Z32 Series)
 CIRCUIT DIAGRAM

逢

Θ

(1)	(3) (2) 4	(6)(5)		(7)		(39) 7 7) (3)(4)	(35)	(37)
(38)		(39) (36)		(3)	(30)			
	(39)	(13)						

(1) (39)	(1)	(19) (16) (1) (18) (38) (2)	(4) (1)(2)393)(2) (1) (2) (3) (17) (3)	(23)
	(3)	(3) (3) (2) (3)		(3) (17) (8) (6)
(3)		-	(6) 3	

[^0]: When ordering the above equipment, contact your MISSAN distributor.

[^1]: NOTE: Maintenance items with " \star " should be performed more frequentry according to "Malnsenance under Severe Driving Conditions".
 Check: Check. Correct or replace if necessary.

[^2]: NOTE: (1) For models tor Sweden perform at the first $80,000 \mathrm{~km}$ (48,000 miles), and then every $40,000 \mathrm{~km}(24,000$ miles) or 24 months, whichever comes lirst.
 (2) Maintenance ilems with " \star " should be performed more frequently according to "Maintenance under severe driving conditions".

[^3]: Maintenance operation; Check = Check. Correct or replace if necessary.

[^4]: Maintenance operation: Check = Check. Correct or replace if necessary.

[^5]: "For further details, see "pecommended SAE viscosity number".

[^6]: For example:
 Main journal grade number: 1
 Crankshaft journal grade number: 2
 Main bearing grade number $=1+2$

 $$
 =3
 $$

[^7]: * Check items causing a malfantion of crank afgle sensor circuit first, if both coofe No. 11 and 21 are displayed at the same time.

[^8]: $t_{4}=1.0$ second

[^9]: *: This terminal is connected to terminal No. 36 of E.C.C.S. controt unit.
 When code No. 54 appears during engine self-diagnosis, check line between above terminals for proper contifuity.

[^10]: (ATF): Apply A.T. F.
 t : Select with propar thickness.

[^11]: Adjustment is required.
 Using locking agent [Locktite (Stud lock) of equivalent]

[^12]:

 The tooth pertirn is the best indicntion of how woll the finst trive has ben set up.

[^13]: * For seat belt, refer to MA section.

[^14]: When you read wiring diagrams:

 - Read GI section, "HOW tO READ WIRING DIAGRAMS".
 - See EL section, "POWER SUPPLY ROUTING" for power distribution circuit. When you perform trouble diagnoses, read GI section, "HOW TO FOLLOW FLOW CHART

[^15]: * '3TANDAMO CHARGE* is recommencted in entat that the vehticie is in storage after charging.

